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Abstract. A methodology is proposed to determine the worst case effect that
tolerances in components of active filters might have on its performance. The ap-
proach, based on the use of the Structured Singular Value, is shown to provide
repeatable and non-probabilistic strict bounds on filter performance, allowing the
designer to focus on worst case “limit of performance” comparisonswhen select-
ing filter structure, order and component ratings.
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1 Introduction

This paper considers a new type of performance analysis for active electronic filter
circuits. The widespread mass manufacture of these circuits in all manner of different
applications raises the question of how to ascertain what effect the unavoidable varia-
tion in component values will have on the transfer functionsof active filters [11]. The
standard practice in electronic engineering is to use simulation based solutions to this
problem, using software packages like PSPICE [15]. Unfortunately this approach is
not sufficient to calculate the worst case system response. For example, worst case up-
per and lower bounds on filter gain in response to any possible(bounded) variation in
component values allowsguaranteedachievement of certain design specifications.

A branch of robust control theory is used here to address thisproblem in a rigorous
manner. This paper shows an algorithm to transform this problem to a Robust Control
problem that can be solved using the structured singular value µ (studied, for exam-
ple, in [2, 3, 16, 12]), to determine bounds on the maximum deviation from nominal
behaviour that can occur in a filter transfer function at any specified frequency of inter-
est. The principal advantage in using the proposed approachis that the problem is now
solved in a repeatable and non-probabilistic fashion. The use of the Structured Singular
Value requires that filter sensitivity problems are recast as equivalent system stability
questions. Moreover, that combination of components whichwill result in the worst
case filter performance can be computed reliably using readily available software.
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The proposed analysis technique also compares favourably with an approach based
on the analysis of differential sensitivities, which is sometimes used in practice, because
the proposed technique fully addresses the issue of interdependency or cross coupling
effects between components in a repeatable and deterministic fashion. Moreover, while
a differential sensitivity approach will yield a global worst case effect (i.e., for all fre-
quencies), the proposed approach provides information on the worst case combination
of uncertain elements on a frequency by frequency basis.

Section II introduces the main ideas and considers the issues involved in formulating
the filter sensitivity problem so that the Structured Singular Value can be brought to
bear on it, illustrating how filter transfer functions need to be correctly configured so
that Robust Control ideas can be applied. In section III a selection of the results that
have been obtained is presented. The results considered here provide new insights on
an engineer’s ability to guarantee certain worst case performance specifications for a
particular design.

2 Problem Formulation

This section explains how the question of filter sensitivityis arranged so thatµ-theory
can be brought to bear on it. The methodology used is parallelto that presented by the
authors in [7] to address a similar question for passive filters.

For simplicity, but without loss of generality, a Cascade approach for filter design
will be used, as it is the most common method to design filters [11]: it is based on
the series connection of first or second-order sections whose component values can
then be easily calculated. Using a Cascade approach greatlysimplifies the construction
of higher order filters, so they are frequently used in practice. Accordingly, the filter
structures studied in this paper are designed using cascademethods. The operational
amplifiers are supposed to be bandwidth-limited. This bandwidth limitation, associated
with the use of practical op-amp circuits, can be readily included within the proposed
approach, as it will discussed later.

A filter transfer function is considered withn uncertain parameters∆1, . . . ,∆n

embedded within it. Although uncertain, these parameters are constrained in size to lie
within a certain set of values, i.e., a capacitor is allowed to be no more than 20% outside
its nominal value. LetD denote the set of all bounded perturbations to the nominal filter
transfer function, which is problem specific: each∆1, . . . ,∆n can be thought of as a
set of real perturbations to the ideal parameter values, andwill be viewed as ann-
tuple∆ = diag(∆1, . . . ,∆n). The system obtained when each∆i = 0 corresponds to
thenominal or unperturbed filter transfer function. By convention, and without loss
of generality, the bounds on each parameter may be normalized. Thus, each∆i can
assume any value in the interval[−1,+1]. This leaves a family of systems, one system
for every permissible perturbation∆ ∈ D applied to the nominal system. This family of
systems fully represents the effect that uncertainty can have on a nominal filter transfer
function.
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2.1 The Diagonal Perturbation Formulation (DPF)

The first step is to “extract” the uncertainty that is embedded within D. The extracted
uncertainty can then be viewed as an external∆ acting on the nominal system,̃H(s),
as shown in Fig. 3. Then, the nominal system is what is left behind when this uncertain
∆ has been extracted. The diagonal structure of∆ ensures that each∆i is associated
with one uncertain element only. This rearranged representation of the original system
is called itsDiagonal Perturbation Formulation (DPF). and is denoted asG(s,∆). A
tutorial example of the steps involved in generating the DPFfor a passive, first order
low pass RC filter is presented in [7]. It has already been shown that any linear transfer
function can be expressed in terms of its DPF [5].

2.2 Algorithm to determine the Diagonal Perturbation Formulation

The procedure to determine the DPF for a linear filter is now discussed. A DPF rep-
resentation for higher order filters is constructed by the Cascade connection of lower
order sections, so only low order sections are considered.

Step 1: Generate the block diagram of Fig. 3 that represents the nominal input/output
behaviour of the filter in a canonical form. This form can be achieved by inspection
or through the use of signal flow graph techniques.

Step 2: Incorporate the effect of uncertainty into the block diagram of Fig. 3.
(i) Uncertainty in the numerator of an uncertain componentX can be represented

by a feedforward arrangement given by

X = X0(1 + αX∆X)

whereX0 is the nominal valueαX ∈ R
+ is a weighting that corresponds to

a component tolerance and∆X ∈ R is a real uncertain parameter, that varies
between -1.0 and +1.0.

(ii) The effect of uncertainty associated with components that appear in the denom-
inator of a transfer function can be represented by a feedback arrangement: In
this way the impedance of a component such a as a capacitor with nominal
valueC0 is given by

1

sC0(1 + αC∆C)

whereαC ∈ R
+ and∆C ∈ R, varying between -1.0 and +1.0.

(iii) For an active block (for example, the real operational amplifier, which is bandwidth-
limited), a similar approach can be used: consider the nominal transfer function

Z0(s) =
K

1 + s
B

,

whereK andB represent the nominal gain and bandwidth, respectively. Thus,
uncertainty can be introduced using a feedforward scheme for K and a feed-
back scheme forB. As there can be gain and phase effects associated with a
variation in bandwidth∆B ∈ C is a complex parameter.
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Step 3: Once uncertainty has been added to each component, these uncertainties can
be “extracted” from the nominal system representation by associating an extra in-
put/output pair with each∆ which are now assumed to be located on the main
diagonal of an external system block. This completes the conversion of the system
representation into the DPF type scheme of Fig. 3.

2.3 Formal Statement of the Filter Robustness Problem

A precise definition of worst case filter performance is now given using the terminology
that has been introduced thus far. The maximum transfer function gain from input signal
a(s) to output signalb(s) of the system represented by Fig. 3 may be written as

max
∆∈D

∣∣∣∣
b(s)

a(s)

∣∣∣∣ = max
∆∈D

|G(s,∆)| = Gmax(w,∆). (1)

Similarly, the minimum transfer function gain is given by

min
∆∈D

∣∣∣∣
b(s)

a(s)

∣∣∣∣ = min
∆∈D

|G(s,∆)| = Gmin(w,∆), (2)

which will determine the minimum possible filter response for all values of frequency.
Solution of the optimisation problems in eqns. (1) and (2) will determine two distinct
∆’s.

2.4 Application of the Robust Performance Theorem

The filter sensitivity problem is now recast as an equivalentrobust stability question.
The argument to be used is based on an application of theRobust Performance The-
orem [3], which is now discussed briefly. Consider the system of Fig. 4: There aren
uncertain parameters∆1, . . . ,∆n which correspond to variations in component values.
A “fictitious” uncertain parameterk∆f (k > 0,∆f ∈ C, will be used as a bound on
the gain of the filter, as illustrated in Fig. 4. Here,k is a positive real scalar, and∆f is
viewed as unknown, but constrained to have modulus≤ 1 at each frequency, i.e.,

∆f ∈ Df where Df = {∆f ∈ C | , |∆f (s)| ≤ 1}

In this fashion the gain and phase effects of perturbations to a nominal filter transfer
function are fully addressed. The fictitious termk∆f can be included as an additional
element in the diagonal matrix̃∆. Therefore,

∆̃ =

(
k∆f 0

0 ∆

)

and the set of uncertainties considered is then

D̃ ≡ {∆̃|∆̃ =

(
k∆f 0

0 ∆

)
,∆ ∈ D,∆f ∈ Df}.
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Now there is an equivalent representation ofH̃(s) whose input/output pairs are con-
nected exclusively by onẽ∆ block. Consider this self contained two block feedback
loop. Let the filter gaink be fixed and given for the moment. By considering the Nyquist
stability criterion, it is clear that if there is a∆ ∈ D for which |G(s,∆)| ≥ k−1, then
there is a∆f ∈ Df for which the system is unstable (having a loop gain≥ 1). Con-
versely, if|G(s,∆)| < k−1, for all ∆ ∈ D, then the system is stable for all∆f ∈ Df

(having a loop gain< 1 for every permissible perturbation). Thus, the maximum pos-
sible “size” of |G(s,∆)| is bounded byk−1 if and only if a certain system is robustly
stable. Ask is increased, the first value ofk for which this feedback system may become
unstable corresponds to the largest possible|G(s,∆)| beingk−1. There will therefore
be a distinct value fork where instability occurs at each frequency. This is an important
feature in that one frequency is decoupled from another. Information of this kind means
that the engineer can now think in frequency response terms,an obvious benefit in the
present context of filter design.

The Structured Singular Value µ Consider the arrangement of Fig. 2: at frequency
ω The Structured Singular Value of Matrix Transfer FunctionH̃(s), with uncertainty
∆̃(s) can be defined [2] as follows:

µ
(
H̃, ∆̃, ω

)
≡

(
min
∆̃∈D̃

{k|det(1 + ∆̃(jω)H̃(jω)) = 0

)−1

. (3)

Thus, the smallestk that will cause instability in the closed loop system at thatfre-
quency isµ−1. Thisk should now be viewed as a stability margin for the simultaneous
perturbation of a parameterized system byn uncertain components.µ-analysis exploits
the a priori knowledge that exists about the internal structure of the uncertainty in a
system and treats it in a worst case sense.

It should be noted that the proposed approach is based on the fact that the perfor-
mance parameterk is seen only by the top row of the matrix̃H(s) in the arrangement
of Fig. 4. The other rows of̃H(s) are acted on by real∆’s which are fixed in size.
This is an example of the so calledSkewed Structured Singular Valueproblem [14, 13].
Solution of this problem involves defining

Km =

(
k 0
0 I

)

and locating the smallestk that will make det(I + Km∆̃(s)H̃(s)) = 0 at any given
frequency. Thus, the following definition can be given:

µS(H̃, ∆̃, ω) ≡ (min
∆̃∈D̃

{k|det(1 + Km∆̃(jω)H̃(jω)) = 0})−1. (4)

2.5 Computing Worst Case Filter Sensitivity

At this point, the problem at hand is to compute boundsGmax(w,∆) andGmin(w,∆)
on the magnitude of the filter frequency response, over a frequency range of interest.
It is now shown how these functions reduce to an evaluation ofskewed-µ for certain
matrices, when appropriate constructions are used, which is the main result in this paper.
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Theorem 1. The frequency response of filterG(ω,∆) at each frequencyω is bounded
by

Gmin(ω,∆) ≤ G(ω,∆) ≤ Gmax(ω,∆) (5)

where

Gmin(ω,∆) = lim
ǫ→∞

µS

(
ǫ

1 + ǫH̃
, ∆̃, ω

)
(6)

Gmax(ω,∆) = µS

(
H̃, ∆̃, ω

)
. (7)

In these equations:

– H̃ corresponds to the nominal system in the Diagonal Perturbation formulation of
G(s,∆),

– ∆ corresponds to the uncertain matrix in the Diagonal Perturbation Formulation
of the filter (in this case, it is a diagonal matrix composed ofthe uncertainty of the
components of the filter:∆ ∈ R

n×n, with |∆ii| ≤ 1 and∆ij = 0 wheni 6= j).
– ∆f corresponds to the fictitious uncertainty:∆f ∈ C, |∆f | ≤ 1.

Proof. Maximum Gain : Based on the definition of the Skewed Structured Singular
Value, and the considerations in previous sections, the maximum filter gain at frequency
ω can be computed from

Gmax(ω,∆) =

(
min
∆̃∈D̃

{k|det(1 + Km∆̃(jω)H̃(jω)) = 0}

)−1

= µS

(
H̃, ∆̃, ω

)
(8)

which corresponds to the smallest gaink for which the system may be unstable (i.e.,
not robustly stable). Thus,Gmax(s) yields the largest possible magnitude ofH(s,∆)
at each value of frequency.

Minimum Filter Gain
A difficulty with the application of the robust performance theorem arises when at-

tempting to determine the minimum possible filter gain. The theorem is only of use in
finding the maximum allowable gain before a loop goes unstable. However, the min-
imum gain can be determined fromG(s,∆) by placing it on the feedback path of a
suitable system, such as the one illustrated in Fig. 5. Again, each of the representations
in the figure are equivalent.

Let ǫ ∈ R be a constant gain term, which can be assumed to be arbitrarily large.
Evaluating the closed loop response of the feedback system Fig. 5(i) yields

b̄(s)

ā(s)
=

ǫ

1 + G(s,∆)ǫ

Thus, for largeǫ
b̄(s)

ā(s)
≈

1

G(s,∆)

Then if ǫ is large enough, the gain of the feedback system will be a maximum when
the gain ofG(s,∆) is a minimum. Since the system has now been rearranged into a
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a robust stability question of standard form, the Robust Performance Theorem can be
applied. Thus,

Gmin(ω,∆) ≡ (min
∆̃∈D̃

{k|det(1 + Km∆̃(jω)
ǫ

1 + ǫH̃
) = 0})−1 (9)

= µS

(
ǫ

1 + ǫH̃
, ∆̃, ω

)

where such ak corresponds to the minimum gain possible fromG(s,∆).

Remark 1.Bounds on worst case performance can now be obtained by calculating the
skewed-µ using already available algorithms, implemented within off-the-self software.
This calculation also gives the worst-case uncertainties,which can be transformed eas-
ily to worst-case component values.

Remark 2.Although it is known that considering uncertainties that are real lead to some
computational difficulties, the fact the the fictitious gainis complex is known to improve
the numerical behaviour, giving tight bounds on the skewed-µ value [4].

Remark 3.From a theoretical point of view it is not necessary to approximateGmin(ω,∆)
using the fictitious feedback withǫ: G−1(ω,∆) can be approximated using a suitable
Linear Fractional Transformation [17]. However the proposed numerical method is sim-
pler to apply and gives a tight approximation, with good numerical behaviour.

3 State-spaceµ-analysis

It has been shown that Filter robustness analysis reduces toa question of checking the
value forµK(G(s,∆)) over the closed right-half-plane (whereG(s) is a stable system
andXK represents an appropriate uncertainty set depending on theproblem at hand, be
it maximum or minimum filter gain). This approach can be computationally intensive
and an appropriate frequency vector for the analysis stage requires consideration. A
sweep of frequency means that it is impossible to guarantee atrue upper bound on
filter gain. Moreover as skew\realµ may not be a smooth function of the problem data
[4], including the worst case frequency itself as part of theskew-µ problem is intuitively
appealing. The question of focussing the analysis machinery on the particular frequency
region where the worst case occurs is therefore now considered. The authors suggest
that a so called ”state-spaceµ” approach be applied to this problem to determine a
guaranteed upper bound on worst case filter performance. Thenext subsection provides,
without proof, the appropriate state spaceµ result for the filter performance question.
For the necessary proofs and a more extensive digest of the literature on this subject the
reader should consult [10].

3.1 State-spaceµ

The development of state-spaceµ is based on the fact that a transfer function can be
expressed as an LFT of a constant matrix on the frequency variable. Given a transfer

 1344   IJ-STA, Volume 4, N°2, December, 2010.      
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functionG(s), its equivalent state space representation is given by

G(s) = C(sIp − A)−1B + D =
1

s
Ip ∗ Ĝ (10)

whereĜ is the constant matrix

Ĝ =

[
A B

C D

]
(11)

andp is the order of the state-space. State spaceµ analysis recasts the filter analysis
question as aµ computation on the static matrix̂G where the frequency variable1

s
Ip

is included as an uncertainδi. The standard grid computation ofµ is then transformed
to a test on a static matrix with frequency explicitly represented as an uncertain (real)
parameter within that static matrix. Unlike classicalµ-analysis, this approach allows a
frequency interval to be selecteda priori whereω ∈ [ω, ω], by using the transformation

T =

[
0 Ip

1

2
Ip

1

2
Ip

]

and introducing the parameters

ω0 =
1

2
(ω + ω)

αω =
1

2
(ω − ω).

The following result extends work first presented in [10] so that the evaluation of
filter gain reduces to an application of the main loop theoremand a computation of
µ(T ∗ Ĝ).

Theorem 2. Suppose thatG(s) has all of its poles in the open left-half-plane and let
β > 0. Given a minimal state-space representation ofG(s) and the uncertainty struc-
tureX

K̂
, then for all∆ ∈ G(XK) with ‖∆‖∞ ≤ β, the perturbed closed-loop system is

uniformly stable if and only if
µ
K̂
(T ∗ Ĝ) < 1

where

T ∗ Ĝ =


 jαωA

−1

3

√
1

β
A−1

3 B

−j
√

1

β
αωCA−1

3 − 1

β

(
CA−1

3 B − D
)


 (12)

with
A−1

3 = (A − jω0Ip)
−1

A full proof of this result is presented in [10]. This result provides a one shot static
matrix µ test for the general filter performance problem that yields an upper bound on
filter gain over a user defined region of frequency,ω ∈ [ω, ω].

4 Examples

Some examples are now presented to give a summary of the results that can be obtained
using the approach presented in this paper:
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4.1 Filter Analysis

A common way of constructing active filters is to use the Sallen-Key methodology. The
transfer function for a typical Sallen-Key section is

b(s)

a(s)
= K

Z2Z4

Z1Z2 + Z3 + Z4(1 − K) + Z2Z3 + Z4

.

Note thatK = 1 + RA

RB
is the standard gain of a non-inverting operational amplifier

andZ1, . . . , Z4 represents the impedance of the associated simple passive components.
For example, we can consider the second order low pass designshown in Fig. 1, which
has the transfer function

b(s)

a(s)
=

K

R2C1C2s2 + R(2C2 + (1 − K)C1)s + 1
.

This filter then has 5 uncertain components (C1, C2, R,RA andRB).
The standard practice in electrical engineering to evaluate the effect of uncertainty is

the use of Monte-Carlo techniques. As it is well known, Monte-Carlo analysis methods
yield a result that underestimates the worst-case. Fig. 6 illustrates how the proposed
approach provides an upper bound on worst case filter performance for a real example:
Fig. 6 shows how the gap between these bounds can become quitelarge for higher order
filters. In this example a Monte-Carlo approach, which randomly chooses 100 sets of
components, radically underestimates worst case filter performance on an 8th order
Band Pass Sallen-Key filter. It can be seen from this how the proposed approach gives
the designer a bound on the “correct” side from a limit of performance perspective.

4.2 Filter Design

Another design that is frequently used in active filter synthesis is the Rausch structure,
which uses multiple feedback loops to reduce the number of design parameters in the
filter. A second order low pass Rausch structure is shown in Fig. 2 and has the following
transfer function:

b(s)

a(s)
= −

1

R2C1C2s2 + 3RC2s + 1

Although this filter has only three design parameters (C1, C2 andR), in practice
the three resistancesR do not have the same value, due to component tolerance, so
in fact there are five uncertain parameters. The technique proposed in this paper can
take this fact into account, by working with the wiring diagram through the Diagonal
Perturbation Formulation.

As an example, the second order low pass sections of Fig. 1 and2, with component
tolerances of±20% are considered. Fig. 7 shows how the proposed techniques con-
firms that a Sallen-Key filter is less sensitive to uncertainty than its Rausch and simple
feedback counterparts in terms of improved worst case performance. This is due to the
use of the gain controlled feedback stage in the filter whereK = 1 + R1

Rf
. When

Rf >> R1, the sensitivity of the design to component variation is greatly reduced.
In Fig. 8 the proposed technique demonstrates how componentvariation can limit the
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benefits that can be derived from an increase in filter order for fourth and eighth order
Sallen-Key low pass filters that have been constructed usinga series connection of sec-
ond order sections. Fig. 9 illustrates how the proposed approach quantifies the benefits
in moving to higher tolerance components, giving frequencyspecific information about
the worst case effect of moving from10% to 5% toleranced components on the second
order Sallen-Key low pass design in Fig. 1.

4.3 State-Spaceµ

A summary of the results obtained using the newµ based analysis technique on a nor-
malised 4th order Butterworth active low pass filter designed using an similar method-
ology to that outlined above is now presented. Two second order sections are placed in
series and an LFT is generated using thesysic scripting routine from theµ-analysis
toolbox.

Fig. 10 illustrates how theµ based analysis (dotted lines) provides upper bounds on
filter performance. Here, the full line represents the nominal 4th order filter response.
To highlight how a state spaceµ approach yields a safer upper bound by incorporating
the frequency at which the worst case will occur explicitly within the analysis consider
Fig. 11. Here the maximum deviation from the nominal for the 4th order filter response
is calculated using bothµ Toolbox and state spaceµ techniques. Theµ-Toolbox ”upper”
bound provides filter response information only at a user supplied vector of frequencies.
The state spaceµ upper boundguaranteesthat no higher value of filter gain is possible
within this range of frequency. The cost of this security is potential conservatism within
the upper bound that is returned. The optimisation-based lower bound on state space
µ gives a good estimate of the worst case frequency, (in this case, an irrational num-
ber). Moreover the worst case combination of filter components that is returned is not
dominated by the filter performance I/O pair in the analysis.This feature is intuitively
appealing. In this example the frequency where the worst case occurs is determined
during the first iteration of theµ algorithm, to be 0.994 radians per second, correct to
three decimal places.

5 Conclusions

This paper has shown how robust control theory, can be used toobtain limits of perfor-
mance for active RC filters, where the components used in their manufacture are subject
to variation. The technique is based on mapping the worst-case performance of a filter
to an equivalent Robust Stability problem where component uncertainty is represented
by structured (real and complex) perturbations to a nominalfilter transfer function.

The proposed methodology gives a repeatable non-probabilistic upper bound on
worst case filter performance. It fully addresses the question of cross-coupling effects
on a frequency by frequency basis. The proposed procedure isapplicable quite generally
to any method for designing linear filters. As an example it has been shown how Sallen-
Key filters provide the lowest sensitivity to variation in component values.

The results illustrate how this new approach provides a veryuseful tool for a com-
parative analysis of the worst case performance of different active filter configurations:
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bounds on filter frequency response are given, so that limit of performance decisions
can be made reliably when moving to higher order filters or using lower tolerance com-
ponents.

A state spaceµ approach gives the designer a safe upper bound so that limit of
performance decisions can be made reliably when moving to higher order filters or
using lower tolerance components.

In conclusion, this paper has illustrated a very useful analysis tool from both an
educational and a practical engineering design perspective. Although the technique has
been presented for active filter in Cascade configuration, the technique can be used for
other kind of filters.
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Fig. 2.Second Order low pass Rausch section
.

Fig. 3.The Diagonal Perturbation Formulation (DPF).

Fig. 4. Incorporating fictitious performance parameter into the DPF.
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Fig. 5.Determination of the minimum gain fromG(s, ∆).
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Fig. 6. Monte-Carlo (dashed) vs. Worst-case performance determined with the proposed tech-
nique.
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Fig. 7.Comparison, using the proposed approach, of Sallen-Key (full), Rausch (dashed) and Sim-
ple Feedback (dash-dot) filters.
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Fig. 8.Comparison, using the proposed approach, of worst-case performance of Sallen-Key filters
of orders 4 (full), 6 (dashed) & 8 (dash-dot).
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Fig. 9. Analysis of the benefit in moving to higher toleranced components (dashed: 5%, full:
10%).
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Fig. 10.4th order Active Butterworth Filter Response: nominal vs. bounds on filter performance
obtained with the proposed technique (dotted).
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Fig. 11.State-Spaceµ vs. Robust Control Toolbox upper bounds on 4th order Butterworth filter
performance.
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