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Abstract. A methodology is proposed to determine the worst case effect that
tolerances in components of active filters might have on its performahecap-
proach, based on the use of the Structured Singular Value, is shownwiolgr
repeatable and non-probabilistic strict bounds on filter performatoiiag the
designer to focus on worst case “limit of performance” comparisdren select-

ing filter structure, order and component ratings.
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1 Introduction

This paper considers a new type of performance analysischiveaelectronic filter
circuits. The widespread mass manufacture of these a@rouill manner of different
applications raises the question of how to ascertain wiheattethe unavoidable varia-
tion in component values will have on the transfer functiohactive filters [11]. The
standard practice in electronic engineering is to use sitil based solutions to this
problem, using software packages like PSPICE [15]. Unfately this approach is
not sufficient to calculate the worst case system respomsexample, worst case up-
per and lower bounds on filter gain in response to any posfiolended) variation in
component values allowguaranteedachievement of certain design specifications.

A branch of robust control theory is used here to addrespthisiem in a rigorous
manner. This paper shows an algorithm to transform thislpnolto a Robust Control
problem that can be solved using the structured singulareyal(studied, for exam-
ple, in [2,3,16,12]), to determine bounds on the maximumat®n from nominal
behaviour that can occur in a filter transfer function at grgctfied frequency of inter-
est. The principal advantage in using the proposed appiiedhbht the problem is now
solved in a repeatable and non-probabilistic fashion. Heeafi the Structured Singular
Value requires that filter sensitivity problems are recaséguivalent system stability
guestions. Moreover, that combination of components whithresult in the worst
case filter performance can be computed reliably using Iseadhilable software.
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The proposed analysis technique also compares favourathiyawapproach based
on the analysis of differential sensitivities, which is siimes used in practice, because
the proposed technique fully addresses the issue of imgerdiency or cross coupling
effects between components in a repeatable and detenmfaistiion. Moreover, while
a differential sensitivity approach will yield a global vebicase effect (i.e., for all fre-
guencies), the proposed approach provides informatioh®mvbrst case combination
of uncertain elements on a frequency by frequency basis.

Section Il introduces the main ideas and considers thessauelved in formulating
the filter sensitivity problem so that the Structured SiagiWalue can be brought to
bear on it, illustrating how filter transfer functions needbe correctly configured so
that Robust Control ideas can be applied. In section Il ectigln of the results that
have been obtained is presented. The results consideregimide new insights on
an engineer’s ability to guarantee certain worst case peeoce specifications for a
particular design.

2 Problem Formulation

This section explains how the question of filter sensitiigtarranged so that-theory
can be brought to bear on it. The methodology used is pataltblat presented by the
authors in [7] to address a similar question for passivergilte

For simplicity, but without loss of generality, a Cascaderapch for filter design
will be used, as it is the most common method to design filtétg: [it is based on
the series connection of first or second-order sections &vkkomponent values can
then be easily calculated. Using a Cascade approach gsaathifies the construction
of higher order filters, so they are frequently used in pcactAccordingly, the filter
structures studied in this paper are designed using cassatteds. The operational
amplifiers are supposed to be bandwidth-limited. This badtiwimitation, associated
with the use of practical op-amp circuits, can be readilyuded within the proposed
approach, as it will discussed later.

A filter transfer function is considered with uncertain parameterd,,..., A,
embedded within it. Although uncertain, these parameterganstrained in size to lie
within a certain set of values, i.e., a capacitor is alloweldd no more than 20% outside
its nominal value. LeD denote the set of all bounded perturbations to the nomimei fil
transfer function, which is problem specific: eadh, ..., A,, can be thought of as a
set of real perturbations to the ideal parameter valuesvathde viewed as am-
tuple A = diag/4,, ..., A,). The system obtained when eadh = 0 corresponds to
the nominal or unperturbed filter transfer function. By convention, and without loss
of generality, the bounds on each parameter may be norrdalizaus, eachi; can
assume any value in the interyall, +1]. This leaves a family of systems, one system
for every permissible perturbatiafh € D applied to the nominal system. This family of
systems fully represents the effect that uncertainty cae ba a nominal filter transfer
function.
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2.1 The Diagonal Perturbation Formulation (DPF)

The first step is to “extract” the uncertainty that is embetidéhin D. The extracted
uncertainty can then be viewed as an exterfv@cting on the nominal systenf] (s),
as shown in Fig. 3. Then, the nominal system is what is lefirfablwhen this uncertain
A has been extracted. The diagonal structuréla@nsures that eacH; is associated
with one uncertain element only. This rearranged reprasientof the original system
is called itsDiagonal Perturbation Formulation (DPF)and is denoted aS(s, A). A
tutorial example of the steps involved in generating the BdtRa passive, first order
low pass RC filter is presented in [7]. It has already been shbat any linear transfer
function can be expressed in terms of its DPF [5].

2.2 Algorithm to determine the Diagonal Perturbation Formulation

The procedure to determine the DPF for a linear filter is noscused. A DPF rep-
resentation for higher order filters is constructed by thec@de connection of lower
order sections, so only low order sections are considered.

Step 1: Generate the block diagram of Fig. 3 that represents themadnmput/output
behaviour of the filter in a canonical form. This form can bkiaged by inspection
or through the use of signal flow graph techniques.

Step 2: Incorporate the effect of uncertainty into the block diagraf Fig. 3.

() Uncertainty in the numerator of an uncertain compon€rdan be represented
by a feedforward arrangement given by

X = Xo(1+ axAx)

where X is the nominal valuerx € R™ is a weighting that corresponds to
a component tolerance antly € R is a real uncertain parameter, that varies
between -1.0 and +1.0.

(i) The effect of uncertainty associated with components {iya¢ar in the denom-
inator of a transfer function can be represented by a feddfimangement: In
this way the impedance of a component such a as a capacitomaihinal
valueCy is given by .

sCo(1+ acAc)

whereac € RT andA¢ € R, varying between -1.0 and +1.0.
(iii) For an active block (for example, the real operational afiepliwhich is bandwidth-
limited), a similar approach can be used: consider the nalriansfer function

K
Z = —)
o) = 77 =
whereK and B represent the nominal gain and bandwidth, respectivelysTh
uncertainty can be introduced using a feedforward schem& fand a feed-
back scheme foB. As there can be gain and phase effects associated with a
variation in bandwidtmAp € C is a complex parameter.
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Step 3: Once uncertainty has been added to each component, thesgaimies can
be “extracted” from the nominal system representation lspeating an extra in-
put/output pair with eackd which are now assumed to be located on the main
diagonal of an external system block. This completes thearsion of the system
representation into the DPF type scheme of Fig. 3.

2.3 Formal Statement of the Filter Robustness Problem

A precise definition of worst case filter performance is novegiusing the terminology
that has been introduced thus far. The maximum transfetibtmgain from input signal
a(s) to output signab(s) of the system represented by Fig. 3 may be written as

b(s)

a(s)

= rAng%( |G(s,4)| = Gmaz(w, Q). Q)

max
AeD

Similarly, the minimum transfer function gain is given by

b(s)

min a(s)

AeD

= min |G(s, 4)] = Guin(w, A), (2

which will determine the minimum possible filter responsedt values of frequency.
Solution of the optimisation problems in egns. (1) and (2) determine two distinct
A’s.

2.4 Application of the Robust Performance Theorem

The filter sensitivity problem is now recast as an equivatebtist stability question.
The argument to be used is based on an application dRtteist Performance The-
orem [3], which is now discussed briefly. Consider the system gf Bi There arex
uncertain parameterd, ..., A,, which correspond to variations in component values.
A *fictitious” uncertain parametekAy(k > 0, Ay € C, will be used as a bound on
the gain of the filter, as illustrated in Fig. 4. Hefeis a positive real scalar, anfl; is
viewed as unknown, but constrained to have modglusat each frequency, i.e.,

Are Dy whereDy ={A;eC|, |Ar(s)| <1}

In this fashion the gain and phase effects of perturbatieasitominal filter transfer
function are fully addressed. The fictitious tekm ¢ can be included as an additional

element in the diagonal matri&. Therefore,

~ (kAf O
a-(3)
and the set of uncertainties considered is then

D={A|A= <k§f Z) ,AeD,A; € Dy}
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Now there is an equivalent representationfb(fs) whose input/output pairs are con-
nected exclusively by onél block. Consider this self contained two block feedback
loop. Let the filter gairk be fixed and given for the moment. By considering the Nyquist
stability criterion, it is clear that if there is A € D for which |G(s, A)| > k™1, then
there is aA; € Dy for which the system is unstable (having a loop gairl). Con-
versely, if|G(s, A)| < k1, for all A € D, then the system is stable for all; € Dy
(having a loop gain< 1 for every permissible perturbation). Thus, the maximum pos
sible “size” of |G (s, A)| is bounded byt~ if and only if a certain system is robustly
stable. As is increased, the first value bffor which this feedback system may become
unstable corresponds to the largest possiig, A)| beingk~. There will therefore
be a distinct value fok where instability occurs at each frequency. This is an irgr
feature in that one frequency is decoupled from anothesrinétion of this kind means
that the engineer can now think in frequency response teamebvious benefit in the
present context of filter design.

The Structured Singular Value o Consider the arrangement of Fig. 2: at frequency
w The Structured Singular Value of Matrix Transfer Functiiiis), with uncertainty

A(s) can be defined [2] as follows:

1 (H A,w) — <Zpé%{k|det(1+ﬂ(jw)ﬁ(jw)) :0> o 3)

Thus, the smallest that will cause instability in the closed loop system at that
quency isu~!. Thisk should now be viewed as a stability margin for the simultaiseo
perturbation of a parameterized systembyncertain componentg-analysis exploits
the a priori knowledge that exists about the internal structure of theettainty in a
system and treats it in a worst case sense.

It should be noted that the proposed approach is based oadhthét the perfor-
mance parametér is seen only by the top row of the matrfi(s) in the arrangement
of Fig. 4. The other rows off(s) are acted on by real\’s which are fixed in size.
This is an example of the so call&#kewed Structured Singular Valpmblem [14, 13].
Solution of this problem involves defining

k0
o = (o)

and locating the smalledt that will make det{ + K,,A(s)H(s)) = 0 at any given
frequency. Thus, the following definition can be given:

ps(H,A w) = (min k] det(1 + K A(jw)H (jw)) = 0}) 7" 4)

2.5 Computing Worst Case Filter Sensitivity

At this point, the problem at hand is to compute bou@s, . (w, A) andG ;. (w, A)
on the magnitude of the filter frequency response, over aifnecy range of interest.
It is now shown how these functions reduce to an evaluaticskefvedg for certain
matrices, when appropriate constructions are used, whitleimain result in this paper.
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Theorem 1. The frequency response of filt6fw, A) at each frequency is bounded
by

Gmin(wa A) S G(w7 A) S Gmam(w7 A) (5)
where
€ ~
Gmin 7A = li =~ 7A7 6
(w, 4) EEECMS(MFEH w) (6)
Gmam(w7 A) = Us (ﬁv Av w) . (7)

In these equations:

— H corresponds to the nominal system in the Diagonal Pertiobaormulation of
G(s,AQ),

— A corresponds to the uncertain matrix in the Diagonal Peratibn Formulation
of the filter (in this case, it is a diagonal matrix composedthaf uncertainty of the
components of the filterd € R™*", with |A;;| < 1 andA;; = 0 wheni # j).

— Ay corresponds to the fictitious uncertaint; € C, |Af| < 1.

Proof. Maximum Gain: Based on the definition of the Skewed Structured Singular
Value, and the considerations in previous sections, théman filter gain at frequency
w can be computed from

—1
in (k] det(1 + Ko Aje) H () — 0})
AED

Gas(. ) = (

— s (H,4,w) (8)

which corresponds to the smallest gaiior which the system may be unstable (i.e.,
not robustly stable). Thug7,,..(s) yields the largest possible magnitudefs, A)
at each value of frequency.

Minimum Filter Gain

A difficulty with the application of the robust performandebrem arises when at-
tempting to determine the minimum possible filter gain. THeotem is only of use in
finding the maximum allowable gain before a loop goes unstdtdbwever, the min-
imum gain can be determined fro6i(s, A) by placing it on the feedback path of a
suitable system, such as the one illustrated in Fig. 5. Agaioh of the representations
in the figure are equivalent.

Lete € R be a constant gain term, which can be assumed to be arlitiange.
Evaluating the closed loop response of the feedback sysigrd [ yields

b(s) €

a(s) 1+ G(s,A)e

Thus, for large

bs) 1
a(s) ~ G(s,A)

Then if e is large enough, the gain of the feedback system will be a maxi when

the gain ofG(s, A) is a minimum. Since the system has now been rearranged into a
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a robust stability question of standard form, the RobustdP@ance Theorem can be
applied. Thus,

€

Gmin(w,A) = (min{k|det 1+ K, AGjw -
(0.2) = (amin K] det(1 + K Al ——

6 ~
= —— Aw
MS(1+6H )

where such & corresponds to the minimum gain possible fr6ifs, A).

) =0}~ 9)

Remark 1.Bounds on worst case performance can now be obtained bylaticythe
skewedp using already available algorithms, implemented withirtbé-self software.
This calculation also gives the worst-case uncertaintig;h can be transformed eas-
ily to worst-case component values.

Remark 2.Although it is known that considering uncertainties thatreal lead to some
computational difficulties, the fact the the fictitious gailcomplex is known to improve
the numerical behaviour, giving tight bounds on the skewe@iue [4].

Remark 3.From a theoretical point of view it is not necessary to appnateG,,,,, (w, A)
using the fictitious feedback with G~!(w, A) can be approximated using a suitable
Linear Fractional Transformation [17]. However the pragmbaumerical method is sim-
pler to apply and gives a tight approximation, with good ntioa behaviour.

3 State-spaceu-analysis

It has been shown that Filter robustness analysis redu@eguestion of checking the
value forux (G(s, A)) over the closed right-half-plane (whet& s) is a stable system
and Xy represents an appropriate uncertainty set depending grdab&em at hand, be

it maximum or minimum filter gain). This approach can be cotapanally intensive
and an appropriate frequency vector for the analysis stageines consideration. A
sweep of frequency means that it is impossible to guaranteeeaupper bound on
filter gain. Moreover as skéweal x may not be a smooth function of the problem data
[4], including the worst case frequency itself as part ofskews: problem is intuitively
appealing. The question of focussing the analysis machorethe particular frequency
region where the worst case occurs is therefore now comgid@ihe authors suggest
that a so called "state-spagé approach be applied to this problem to determine a
guaranteed upper bound on worst case filter performancen&tisubsection provides,
without proof, the appropriate state spaceesult for the filter performance question.
For the necessary proofs and a more extensive digest otenatlire on this subject the
reader should consult [10].

3.1 State-spaces

The development of state-spagds based on the fact that a transfer function can be
expressed as an LFT of a constant matrix on the frequencgblariGiven a transfer
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functionG(s), its equivalent state space representation is given by

1 .
G(s)=C(sl,— A" 'B+D = gIP*G (10)
whered is the constant matrix
G- |48 (11)
~|CD

andp is the order of the state-space. State spaemalysis recasts the filter analysis
question as @ computation on the static matri¥ where the frequency variablielp

is included as an uncertad. The standard grid computation pfis then transformed
to a test on a static matrix with frequency explicitly regmet®d as an uncertain (real)
parameter within that static matrix. Unlike classigaanalysis, this approach allows a
frequency interval to be selectagriori wherew € |w, @], by using the transformation

0 I
r=|° [ }
ot
and introducing the parameters

wo = 5(54“&)

1

Qa, = 5(@ —w).
The following result extends work first presented in [10] kattthe evaluation of
filter gain reduces to an application of the main loop theoesd a computation of
w(T x Q).

Theorem 2. Suppose that?(s) has all of its poles in the open left-half-plane and let
8 > 0. Given a minimal state-space representationz¢§) and the uncertainty struc-
ture X, then forallA € G(Xxc) with [[A|| < 3, the perturbed closed-loop system is
uniformly stable if and only if

LL]&(T * G) <1
where
R jou ATt 1ATB
TxG=| S0 1\/;_f (12)
—j\/3auCA; =5 (CA;'B - D)
with

A3t = (A~ jwoly) ™!

A full proof of this result is presented in [10]. This resuibgides a one shot static
matrix p test for the general filter performance problem that yieldsigper bound on
filter gain over a user defined region of frequenecy [w, ©].

4 Examples

Some examples are now presented to give a summary of thésrdmtlcan be obtained
using the approach presented in this paper:



1346 1J-STA, Volume 4, N°2, December, 2010.

4.1 Filter Analysis

A common way of constructing active filters is to use the $aley methodology. The
transfer function for a typical Sallen-Key section is
b(s) ZaZy

a(s) leg+Zg+Z4(17K)+ZQZ?,+Z4

Note thatK' = 1+ g—g is the standard gain of a non-inverting operational amplifie
andZ,, ..., Z, represents the impedance of the associated simple passiymoents.
For example, we can consider the second order low pass dgsigm in Fig. 1, which
has the transfer function

b(s) K

a(s) N R2C,Cys2 + R(202 + (1 — K)Cl)s +1°

This filter then has 5 uncertain componends (C>, R, R4 andRg).

The standard practice in electrical engineering to evaltre effect of uncertainty is
the use of Monte-Carlo techniques. As it is well known, Me@&lo analysis methods
yield a result that underestimates the worst-case. Figustihtes how the proposed
approach provides an upper bound on worst case filter peafucenfor a real example:
Fig. 6 shows how the gap between these bounds can becoméangétéor higher order
filters. In this example a Monte-Carlo approach, which ranigochooses 100 sets of
components, radically underestimates worst case filtopeance on an 8 order
Band Pass Sallen-Key filter. It can be seen from this how tbpgsed approach gives
the designer a bound on the “correct” side from a limit of perfance perspective.

4.2 Filter Design

Another design that is frequently used in active filter sgsth is the Rausch structure,
which uses multiple feedback loops to reduce the number sifjdgparameters in the
filter. A second order low pass Rausch structure is showrgnZand has the following
transfer function:

b(s) 1

a(s)  R2C103s2 4+ 3RCys + 1

Although this filter has only three design parametérs, C; and R), in practice
the three resistance® do not have the same value, due to component tolerance, so
in fact there are five uncertain parameters. The techniqopoged in this paper can
take this fact into account, by working with the wiring diagr through the Diagonal
Perturbation Formulation.

As an example, the second order low pass sections of Fig. 2,amth component
tolerances of-20% are considered. Fig. 7 shows how the proposed techniques con
firms that a Sallen-Key filter is less sensitive to uncertaihtin its Rausch and simple
feedback counterparts in terms of improved worst case pa#oce. This is due to the
use of the gain controlled feedback stage in the filter whére= 1 + %. When
Ry >> Ry, the sensitivity of the design to component variation isafyereduced.

In Fig. 8 the proposed techniqgue demonstrates how compeaéation can limit the
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benefits that can be derived from an increase in filter ordefofarth and eighth order
Sallen-Key low pass filters that have been constructed wsgegies connection of sec-
ond order sections. Fig. 9 illustrates how the proposedagmbr quantifies the benefits
in moving to higher tolerance components, giving frequespscific information about
the worst case effect of moving froh% to 5% toleranced components on the second
order Sallen-Key low pass design in Fig. 1.

4.3 State-Spaces

A summary of the results obtained using the netvased analysis technique on a nor-
malised 4th order Butterworth active low pass filter desiuging an similar method-
ology to that outlined above is now presented. Two seconeraeictions are placed in
series and an LFT is generated usingdlysi c scripting routine from thei-analysis
toolbox.

Fig. 10 illustrates how thg based analysis (dotted lines) provides upper bounds on
filter performance. Here, the full line represents the nandth order filter response.
To highlight how a state spageapproach yields a safer upper bound by incorporating
the frequency at which the worst case will occur explicitighin the analysis consider
Fig. 11. Here the maximum deviation from the nominal for tttrea@rder filter response
is calculated using botf Toolbox and state spaggechniques. The-Toolbox "upper”
bound provides filter response information only at a usepkegb vector of frequencies.
The state space upper boundjuaranteeshat no higher value of filter gain is possible
within this range of frequency. The cost of this securityasgmtial conservatism within
the upper bound that is returned. The optimisation-basedribound on state space
u gives a good estimate of the worst case frequency, (in tlEs, @ irrational num-
ber). Moreover the worst case combination of filter comptsmémat is returned is not
dominated by the filter performance 1/O pair in the analyBhs feature is intuitively
appealing. In this example the frequency where the wors oasurs is determined
during the first iteration of the algorithm, to be 0.994 radians per second, correct to
three decimal places.

5 Conclusions

This paper has shown how robust control theory, can be usstain limits of perfor-
mance for active RC filters, where the components used inrtreiufacture are subject
to variation. The technique is based on mapping the wors-parformance of a filter
to an equivalent Robust Stability problem where componanettainty is represented
by structured (real and complex) perturbations to a nonfiltet transfer function.

The proposed methodology gives a repeatable non-prostbilipper bound on
worst case filter performance. It fully addresses the qoesif cross-coupling effects
on a frequency by frequency basis. The proposed procedapplicable quite generally
to any method for designing linear filters. As an example stin@en shown how Sallen-
Key filters provide the lowest sensitivity to variation innsponent values.

The results illustrate how this new approach provides a useful tool for a com-
parative analysis of the worst case performance of difteaetive filter configurations:
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bounds on filter frequency response are given, so that lifrpedormance decisions
can be made reliably when moving to higher order filters angitower tolerance com-
ponents.

A state space: approach gives the designer a safe upper bound so that fimit o
performance decisions can be made reliably when movingdbehniorder filters or
using lower tolerance components.

In conclusion, this paper has illustrated a very useful ymisiltool from both an
educational and a practical engineering design persge&lithough the technique has
been presented for active filter in Cascade configurati@tgbhnique can be used for
other kind of filters.
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Fig. 1. Second Order low pass Sallen Key section
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Fig. 2. Second Order low pass Rausch section
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Fig. 3. The Diagonal Perturbation Formulation (DPF).
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Fig. 4. Incorporating fictitious performance parameter into the DPF.
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Fig. 6. Monte-Carlo (dashed) vs. Worst-case performance determined vétprtiposed tech-
nique.
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Fig. 7.Comparison, using the proposed approach, of Sallen-Key (full)séte{dashed) and Sim-
ple Feedback (dash-dot) filters.
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Fig. 8. Comparison, using the proposed approach, of worst-case parfioeof Sallen-Key filters
of orders 4 (full), 6 (dashed) & 8 (dash-dot).
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Fig. 9. Analysis of the benefit in moving to higher toleranced components (da&i§é, full:
10%).

Fig. 10.4th order Active Butterworth Filter Response: nominal vs. bounds on fistsformance
obtained with the proposed technique (dotted).
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Fig. 11. State-Spacg vs. Robust Control Toolbox upper bounds on 4th order Butterworth filte
performance.



