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Abstract. This paper deals with the modeling and nonlinear sliding mode con-
trol with observer of a centrifugal pump system driven by a three-phase induc-
tion motor, which is supplied by a photovoltaic generator (PVG). This work is 
motivated by the need to track the maximum power from the PVG which is a 
non-linear device having illumination-dependent volt-ampere characteristic. 
This objective is reached by the application of a sliding mode control approach 
(SMC). First, the different models of elements composing the whole system are 
presented: the PVG, the DC/AC inverter, the induction motor (IM) and the 
pump. Second, we propose a sliding mode control which insures the conver-
gence of the rotor speed and the square of the rotor flux magnitude to their ref-
erences. This choice allows the PVG to work at its maximum power point. The 
obtained simulation results illustrate the validity and the performances of the 
suggested approach.… 

Keywords. Sliding Mode Control; Photovoltaic Pumping System; Maximum 
Power Point Tracking; High Gain Observer; Induction Motor. 

1.   Introduction 

During the last decades, an effort has been focused on the use of solar energy. This 
energy, no polluting, available around the world, is certainly a suitable source for 
many applications such as: industrial and aero-spatial, domestic use in rural areas, 
desalination plants etc. Global warming due to emission of CO2 and the shortness of 
fossil sources encouraged scientists to develop the field of renewable energy and 
specially the photovoltaic applications. 
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This paper deals with a photovoltaic pumping system without battery. This solution is 
more economic and friendly with environment due to elimination of the battery and 
his circuit of charge. The electric energy storage is replaced by a water storage in 
elevated tank witch can be used for a many purposes. 
Direct coupling photovoltaic (PV) pumping system is characterized by a low yield. In 
order to improve the efficiency of the total system, PV generator is coupled to the 
pumps via power electronics interface. This electronic adapter is able to extract the 
maximum power point from PV generator, which depends on the load, the irradiance 
and the temperature. For this purpose, many algorithms are presented in the literature 
[1], [2], [4] and [7]: Hill Climbing, and perturb and observe (P&O), incremental con-
ductance (IncCond), Fractional Open-Circuit Voltage, Fractional Short-Circuit Cur-
rent etc. In this paper we adopted the P&O method. The induction motor occupies a 
very significant field in industry and transport. It is appreciated for its robustness, its 
low cost of purchase and maintenance. However, its control is more difficult to real-
ize than other electric machines. Many strategies were developed to make of it a ma-
chine which exceeds the others, even in the controlled systems. In general, the control 
of the induction machine is divided into two classes:  

 low cost control and weak performance (for example the V/f control) 
 High performance control with a reasonable cost (for example sliding mode 

control which ensures a high dynamics…) 
In this paper, a sliding mode control of a photovoltaic pumping system driven by a 
three-phase induction motor is proposed. This new developed approach insures the 
convergence of the rotor speed and the square of the rotor flux magnitude to their 
references, which allows the PV generator to work at its maximum power point. 
The paper is organized as follows: section 1 presents an introduction. Section 2 deals 
with the modeling of the global system (PV generator and the maximum power point 
tracking problem, the three-phase inverter, induction motor pump). Section 3 presents 
the sliding mode control design. Section 4 deals with observer design. Finally, in 
section 5, some simulation results are given to validate the proposed control ap-
proach.  

2.   Photovoltaic Pumping System Description 

The figure 1 shows the proposed structure of the PV pumping system. 
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 Fig. 1. Block diagram of photovoltaic pumping system 

2.1.   Photovoltaic Generator Modeling  

The electric PV module equivalent circuit is shown in Fig. 2 [5], a single-diode model 
SDM from [6].  
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Fig. 2. The electric PV cell/module single-diode model.  

 
The characteristic equation for the current and voltage of PV module is given as fol-
lows [7]. 

( ),, , 1 21 exp 1
PV STC

m
PV STC SC STC ui i K K u⎡ ⎤⎡ ⎤= − −⎢ ⎥⎣ ⎦⎣ ⎦

 (1) 

With K1, K2, K3, K4 and m constants calculated independently of weather conditions. 
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(2) 

 
The PV module used in this system is the SIEMENS SP-150, having the characteris-
tics listed in Table I.  

 
 
 
 
 

Table 1. Characteristics of the used solar module SP150 
Electrical parameters in Standard Test conditions STC 
1)Wp (Watt peak) = Peak power; Air Mass AM= 1.5;  
Irradiance ESTC= 1000 W/m2; Cell temperature TSTC= 25 °C 
Maximum power rating p MPP,STC 150 [Wp]1)

Rated current i MPP,STC 4.40 [A] 
Rated voltage u MPP,STC  34.0 [V] 
Short circuit current i SC ,STC 4.80 [A] 
Open circuit voltage uOC,STC 43.4 [V] 
Nnumber of cells in one panel NCSM 72    pcs.  
PV panel connection resistance rS 35    [mΩ] 
Thermal parameters 
2) Normal Operating Cell Temperature at: Irradiance E= 800 W/m2

Ambient temperature TA,REF = 20 °C ; Wind speed vW= 1 m/s 
NOCT2)  45±2 [°C]  
Temp. coefficient of the short-circuit current αisc 2.06[mA/°C]  
Temp. coefficient of the open-circuit voltage αuoc -0.077 [V/°C] 

 
The expression (1) generates iPV,STC (uPV,STC) characteristic in the STC. For other val-
ues of illumination and temperature, the new current and voltage values of the PV 
panel are [7-8]. 

C STT T TΔ = − C      With     ( ,800
C

C A A REF
E

T T NOCT T= + − )  (3) 
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,PV PV STC PVi i i= + Δ  (5) 

PV uoc su T r PViαΔ = − Δ − Δ  (6) 

,PV PV STC Pu u u V= + Δ  (7) 

For a PVG made up of NBPG branches in parallels, each branch is made up of NMSB 
modules in series comprising in NCSM cells in series [3]. The current delivered by the 
PVG and the corresponding voltage are: 

PV BPG PV

PV MSB P

I N i
U N u

=⎧
⎨ =⎩ V

 (8) 

 
The PVG is formed with ten PV modules, which are connected with eight modules in 
series and two in parallel. Thus, the PVG have a peak output power of 1500W, an 
open-loop output voltage of 434 V, a short-circuit current of 4.8 A, and a peak cur-
rent of 4.4 A at the peak power point. 

2.2.   The DC/ DC Boost Converter Model  

DC-DC converters, as voltage elevators, are also used in PV applications, especially 
in PV pumping. The model of the DC/DC boost converter is obtained by application 
of basic laws governing the operation of the system. A boost converter is a power 
converter with an output DC voltage greater than its DC input voltage. It is a class of 
switching-mode power supply SMPS containing at least two semiconductor switches 
(a diode D and The switch Q is typically a MOSFET, IGBT, or BJT) an input filter 
(CPV, LEH ) and an output filter CSH  [9]. The basic circuit is illustrated in figure 3.  
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Fig. 2. The DC-DC Boost converter basic circuit. 

The basic principle of a Boost converter consists in two distinct states: 
 When the switch Q is ON, the current through the inductor LEH increases and 

the energy stored in the inductor builds up; 
 When the switch Q is off, current through the inductor continues to flow via 

the diode D, the CSH network and back to the source. 
The dynamics of this converter operating in the continuous conduction mode can be 
easily obtained by applying Kirchhoff laws.  
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 (9) 

The time period is: 

ON OFFT t t= +  (10) 

The switch state is also governed by a control signal with a constant period T and a 
variable duty cycle α. 

1
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 (11) 

Other hand, the output filter CSH

SH
SH SH EO

dU
C I

dt
= − I  (12) 

2.3. The MPPT Based on a DC/DC Boost Converter  

Up to now, a number of MPPT algorithms have been proposed in the literature, in-
cluding perturb-and observe method (P&O) [10-11], open- and short-circuit method 
[12], incremental conductance algorithm [13], fussy logic [14] and artificial neural 
network [15].  

The P&O method, also known as perturbation method, is the most commonly used 
MPPT algorithm in commercial PV products [17-18]. P&O method has a simple 
feedback structure and fewer measured parameters. It operates by periodically per-
turbing (incrementing or decreasing) the array terminal voltage and comparing the PV 
output power with that of the previous perturbation cycle. 
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Fig. 4. The perturb and observe algorithm flowchart 

The principle of this controller is to generate a perturbation by decreasing or increas-
ing the PWM duty cycle and observing its effect on the output PV power [17–18]. If 
the instant power PPV(k+1) is greater than the previous computed power PPV(k), then 
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the direction of perturbation is maintained. Otherwise, it is reversed. Referring to Fig. 
5, [2] this can be detailed as follows:  

 When dPPV /dUPV > 0, the voltage is increased through α(k+1)= α(k)+Δα, 
 When dPPV/dUPV <0, the voltage is decreased through α(k+1) = α (k) -Δα. 
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Fig. 3. The Power – Voltage characteristic [2] 

 

 
 
 
 
 
 
 
 
 
 

2.4.   The Modeling of PWM Three Phases Inverter 
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Fig. 5. The three phase inverter SPWM circuit 

The most common method of control used today compares the voltage commands for 
each phase with a single triangle waveform. The commands could be derived from 
three individual phase voltage regulators. The electronic components are assumed to 
be perfect (instantaneous commutation, no voltage drop at conducting state).  

The three-phase inverter consists of three independent arms including each one two 
switches. Each switch is composed of a transistor (IGBT, MOSFET…) and of a diode 
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coupled in parallel. The relation of the inverter input and output currents are given by 
the following expression: 

1 2EO sa H sb H sc Hi i S i S i S= + + 3

3HS

f

n

 (13) 

The switches of each inverter arm are complementary; it is the same for the associ-
ated control signals. Thus we obtain: 

1 1 2 2 31 1 1L H L H LS S S S S= − = − = −  (14) 

Where 
1 : , :

0 : , :
iH iL

i
iH iL

S on S of
S

S off S o

→⎧⎪⎪= ⎨⎪ →⎪⎩
 (15) 

The stator is connected as a three-wire system; hence:  

0sa sb scu u u+ + =  (16) 

 The following voltage equations may be written by using Fig. 6: 
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2.5.   The Induction Motor Pump Model 
 
In a two-phase (d-q) Park reference turning at synchronism speed ωdq=ωs, the mathe-
matical model of the induction motor-pump in transient state is written in nonlinear 
equation forms as [3], [5] and [8].  

( )( ) ( , )X t A X t B X U= +&  (18) 

The vector of control U=[usd  usq]T; The vector of state is X=[isd isq ϕrd ϕrq ω], where: 

usd , usq: the direct and quadrature stator voltages; isd, isq : the stator direct and quadra-
ture axis currents in synchronously rotating reference frame; ϕrd ϕrq: the rotor direct 
and quadrature flux and ω the rotor angular speed in electrical radians per second. 
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Rs, Rr: the rotor and stator winding resistances respectively; Msr : the mutual induc-
tance between rotor and stator windings; Lr , Ls: the rotor and stator self-inductances 
respectively; npp : the number of pole pairs; J : the rotor moment of inertia; Cr the 
resistive torque; Cf  is the viscous friction torque;σ the total dispersion coefficient; τs 

the stator constant time; τr the rotor constant time ; n the rotor mechanical speed in 
[rpm];  Ω the angular rotor speed in [rad/s] ;ω the rotor electric speed; the stator elec-
trical synchronism speed; the electromagnetic torque expression using rotor flux and 
the stator currents is 

( )3
2

sr
ém pp rd sq rq sd

r

M
C n i i

L
ϕ ϕ= −  (21) 

3. Nonlinear Sliding Mode Control Design 

The approach proposed in this paper, is a nonlinear order based on the theory of sys-
tems with variable structure with sliding mode. In this part, our objective is to design 
a control law to drive the motor states to a properly designed sliding surface ensuring 
speed and flux references tracking [8]. The switching function considered a vector of 
the errors of electric speed of rotor ω and of the square of the rotor module of flux φ . 

2 2
rd rqφ ϕ ϕ= +  (22) 

The switching function is given by [8]. 
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(23) 

φref : is the flux reference; ωref : the rotor speed reference. 

The differential equations governing the sliding mode are given by [3,5,8]: 
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ka and kb ensure the stability of the system when it is in sliding mode. 
The derivative compared to the time of the sliding surface will be imposed by the 
system of equations according to [8]  

( )( )

( )( )

1
1 1 1 1

2
2 2 2 2

ds
s sign s

dt
ds s sign s
dt

δ γ

δ γ

⎧ = − +⎪⎪
⎨
⎪ = − +
⎪⎩

 (25) 

With δ1, γ1, δ2 and γ2 are positive constants in order to ensure the stability of the sys-
tem. Indeed to ensure the sliding of the system at the time of its first passage by sur-
face S(X) = 0 and to ensure the stability of the system, we consider the following 
function of Lyapunov: 

( ) 1
2

tV X S S=  
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Its differential in relation to time is:   
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To determine the expression of the equivalent order, one calculates the derivative of 
the sliding surface while basing oneself on the expression, which gives [7], [9] and 
[12]: 
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As the initial value of 0rqϕ ≠ , the matrix D is regular. Hence, at the sliding mode, 
the equivalent control part can be obtained as: 

[ ] [ ]  -1-eqU D F= (31) 

Thus the determination of the nonlinear control part Unl is related to the reaching 
condition; it is governed by [8]: 
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The shape of the control is given by: 

eq nlU U U= +  (33) 

4.   Observer Design 

You he electrical behavior of an induction motor can be described in the (α;β) 
coordinate system in stationary reference frame fixed with the stator. Under the 
assumption that the dynamic of the load torque is bounded, the induction motor 
model [22] is given by the following set of state variables equations: 
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(34) 

Where I, Ψ, U are respectively the stator current, the rotor fluxes and the voltage; ω 
denote the motor speed; The parameters K and γ are defined as follows: 
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The measured output vector is [I,ω]T. A high gain observer which allows the estima-
tion of y can be synthesized [22] and its equations are: 

( ) ( )
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 (36) 

Where and are the respective estimates of I, Ψ and θ >0 is a design parameter. Î ψ̂

5. Simulation Results 

The simulated structure of the global system is given by the following figure5. 
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Fig. 5. Sliding mode control structure of an induction motor pump fed by a PVG 
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Within the framework of our application, the parameters of simulations are:  
 

Table II : The three-phase induction motor-driven pump characteristic 
Pu =1Kw  Ls=0.5821H Fv=0.004Nm/rad/s 

N=1440tr/min  Lr=0.5821H npp=2 
Rs=8.87Ω ft=3500Hz  Kch= 8.0197*10-5

Rr=6.95Ω J=0.01Kgm2 Msr=0.55452H 
ka= 450et kb=700  u01= u02=2.5 θ=1 

 
All simulations are carried with MATLAB 7.5. The results are illustrated by figures 
6-13 respectively. 
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Fig.6. Mechanical speed and the corresponding reference signal 
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Fi g.7. Actual, estimated and reference square rotor flux  
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Fig.8. Output of the PV power 
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Fig.9. Duty cycle of the DC-DC boost converter 
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Fig.10. Current output of the PVG 
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Fig.11. Voltage output of the PVG 
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Fig. 12. Ppv(Upv) curves for several irradiation conditions
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Fig. 13. Ipv(Upv) curves for several irradiation conditions
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The simulation results show that:   
 The square one of rotor flow φ tends asymptotically towards its value of ref-

erence 0.81Wb; 
 The electric speed of rotor ω reaches its value of reference; 
 The performances of the observer are illustrated in figure 9 where the estima-

tion error on φ is less than 1.5%. 

6.   Conclusion 
The modeling of the induction motor-driven pump group supplied with a PVG, shows 
well that this type of system has nonlinearities, Indeed, PVG is characterized by non 
linearity of its electric characteristic and its dependence on the climatic conditions. 
Therefore, it can not be comparable with any other traditional generator of electric 
power of continuous type. In this case, we suggest using a variable structure control 
with sliding mode which belongs to robust control approaches that treat nonlinear 
systems. High gain observers have been used in order to provide the missing states 
used by the control laws. 

We presented the steps to be followed for the application of the sliding mode 
control SMC to an induction motor driven pump coupled to a PVG. 
Simulations results which are presented show the performances of the SMC in order 
to force the PVG to work at its maximum power point. The developed SMC assures 
the convergence at the same time of the electric speed of rotor and the square module 
of rotor flux towards their reference values. 
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