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Abstract. In this paper, we develop an indirect adaptive control struc-
ture based on recurrent neural networks. An adaptive emulator inspired
from the Real Time recurrent Learning algorithm is presented. Neural
network does not learn the plant dynamics but emulates the input-output
mapping with a small time window. Thereafter, a controller with a struc-
ture similar to neural emulator is described. Both emulator and controller
adapt their parameters using an online adaptation algorithm in order to
track the process variations. Independent adaptation of networks param-
eters improve controller performances. Regulation and tracking problems
are investigated according to nonlinear system simulations. The satisfac-
tory obtained results show a very good performances in terms of neural
emulation and control of nonlinear systems. The contributions of this pa-
per are the validation of our emulator with experimental data from the
batch reactor of National Engineering of Gabes, Tunisia and the appli-
cation of the real time control algorithm with decoupled adaptive rates
to large scale process: Tennessee Eastman Challenge Process (TECP).

Keywords: Adaptive control, Recurrent neural networks, Neural emu-
lator, RTRL algorithm, Parameters adaptation, Chemical reactors.

1 Introduction

Most industrial processes, particularly chemical systems, are large dimensional,
nonlinear, do not have a known mathematical representation and are constantly
responding to disturbances that are unmeasurable and occurring at unknown
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times [11]. A plant wide control system has received increasing attention in the
last few years. Since neural networks can approximate any nonlinear functions
with arbitrary accuracy [9, 18, 10], they have been successfully used for a number
of chemical engineering applications [24, 29, 28, 1, 2]. Adaptive control by means
of neural networks for nonlinear plant wide dynamical systems is an open issue
[3, 8, 19, 30]. Multilayer networks require, therefore, a large number of nodes for
catching the dynamics of the plant [21].
Recurrent neural networks, which contain internal feedback loop, seem an effi-
cient tool to provide system control with high performance, according to their
ability to capture input-output mapping [4, 5, 20]. R.J. William and D. Zipser
have proposed in 1989 [22] a real time recurrent learning based on the gradient
backpropagation learning algorithm. An indirect adaptive control scheme ap-
pears as an alternative solution to control nonlinear plant wide systems thanks
to its low sensitivity to the noise and better disturbance rejection [10, 18]. The
main advantage of this indirect real time recurrent learning-based control scheme
is that it requires none dynamical model of the process, none particular initial-
ization and none a priori training of the neural networks [6]. The neural emulator
and the neural controller parameters are self adapted starting from zero initial
conditions [14].
The indirect neural network control scheme is composed of Neural Emulator
(NE) and Neural Controller (NC). The subscripts e and c are used to distin-
guish the NE and NC respectively. The NE and NC adapt themselves, as well
as for the adapting rate and the time parameter of both networks (Fig. 1) [2].

Fig. 1. Indirect neural control structure.

Let us define NIN and NOUT , respectively as the number of plant inputs and
outputs where IN and OUT represent the set of inputs and outputs indexes [26].
In the following, we investigate square MIMO systems (ie. N = NIN = NOUT ,
where, IN = {1, . . . , N} and OUT = {1, . . . , N}). The total number of neurons
Ne of NE is chosen equal to 2N so that any node is either an input node or an
output node but not both at same time in order to avoid perturbing any output
signal with input ones. Additional nodes are useless [13]. For NC, the total num-
ber of neurons Nc is chosen equal to 2N . The NC inputs are the N output error
functions and eventually the N desired outputs. Inputs and outputs signals for
NE, NC and plant are normalized in the range [-1, 1].
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The contributions of this paper are the validation of our emulator with experi-
mental data from the batch reactor of National Engineering of Gabes, Tunisia
and the application of the real time control algorithm with decoupled adaptive
rates to large scale process: Tennessee Eastman Challenge Process (TECP).
The paper is planned as follows. In section two, neural emulation is described.
Efficiency of network-based algorithm is established according to switching sys-
tem simulation. An experimental validation of such method to chemical reactor
is also provided in this section. Neural controller and independent adaptation of
networks parameters are provided in section three. Potential of neural control
with decoupled rates is illustrated thanks to the simulation of a nonlinear sys-
tem. A real time application of the proposed control structure to the TECP is
presented.

2 Neural emulation and real time adaptation

2.1 Autonomous adaptation algorithm

The dynamics of the Ne neurons of neural emulator are defined by (1), for
i = 1, . . . , Ne, in continuous time:

1

|τe(t)|

d(si(t))

dt
+ si(t) = tanh





Ne
∑

j=1

wij(t)sj(t) + xi(t)



 (1)

where, xi(t) = ui(t) if i ∈ IN and xi+N (t) = 0 if i ∈ OUT , si(t), wij and 1/|τe|
represent respectively the ith neuron state, the weights from jth neuron to ith
neuron and the NE adaptive time parameter [6]. ŷi(t) = si+N (t) if i ∈ OUT ,
represents the estimation of plant output yi(t).

In this work, we are not interested to memorize the dynamics of the system
but just to estimate the instantaneous output. Consequently, the size of such
network depends only on the number of inputs and outputs [13, 1]. The real
time recurrent learning algorithm is used for the adaptation of neural emulator
parameters and weights. The major advantage of such method is that doesn’t
depend on any preliminary knowledge about dynamics [23].

The instantaneous square output estimation error Ee(t) is defined by (2):

Ee(t) =
1

2

N
∑

l=1

(ŷ l (t)− y l (t))
2

(2)

where, ŷl is the neural emulator output and yl is the plant output. The adapta-
tion of the weight matrix is based on the gradient of the instantaneous error:

dwij(t)

dt
= − |ηe(t)|

N
∑

l=1

el(t) Plij(t) (3)
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where, ηe is the learning rate, el(t) = (ŷ l (t) − y l (t)). Plij = ∂ ŷl/∂wij is the
network sensitivity function updating according to equation (4):

1
|τe(t)|

dPlij(t)
dt

= tanh′

(

Ne
∑

m=1

wlm (t)sm(t) + xl(t)

)

×

(

δl
i ŷj(t) +

Ne
∑

m=1

wlm(t)Pmij(t)

)

− Plij(t)

(4)

δl
i is the Kronecker symbol and tanh’ is the derivative of tanh [6, 13].

2.2 Autonomous Adaptation of parameters ηe and τe

Based on the same method as the one used for the weights matrix adaptation,
an algorithm is defined in order to adapt the parameters ηe and τe:

dηe(t)

dt
= −

N
∑

l=1

(ŷl (t)− yl (t)) V η
l (t) (5)

dτe(t)

dt
= − |η(t)|

N
∑

l=1

(ŷl (t)− yl (t)) V τ
l (t) (6)

with, V ηe

l = ∂ŷl/∂ηe and V τe

l = ∂ŷl/∂τe. V ηe

l and V τe

l are considered as small
perturbations added to the lth neuron state consequently to small variations ∂ηe

and ∂τe of respectively ηe and τe [13]. For simplification, we set V ηe

l =V τe

l =Vl.
Using the dynamic behavior of the network given by equation (1), Vl is computed
as:

1
|τe(t)|

dVl(t)
dt

= tanh′

(

Ne
∑

m=1

wlm(t)sm(t) + xl(t)

)

×

(

Ne
∑

m=1

wlm(t) Vm(t)

)

− Vl(t) + εe

|τe(t)|

(7)

where, εe = dVl

dt

∣

∣

∣

t=0

> 0 ensure the starting and the autonomous evolution of

the algorithm starting from zero initial conditions [26].

2.3 Simulation results for switching system emulation

In this subsection, a witching system is investigated to illustrate performance
of our algorithm-based emulator. The process dynamics is supposed to switch
suddenly from the linear system (S1) given by (8) to the nonlinear one (S2) given
by (9) at time tc = 600s. The term εe is chosen equal to 1 to ensure the starting
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of the system with zero initial conditions of parameters. The sampling time is
chosen equal to 0.1s.

y(k) = 1.918y(k − 1)− 0.945y(k − 2) + 0.11x(k − 1)− 0.0838x(k − 2) (8)

y(k) = 0.9y(k − 1)− 0.001y(k − 2)2 + x(k − 1) + sin(x(k − 2)) (9)

Obtained results, given in Fig. 2, 3 and 4, show that each variation of the input
signal leads to transient behavior while neural emulator adapts itself to the
variation of the plant output.
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Fig. 2. Actual (full line) and estimated outputs (dotted line).
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Fig. 3. Output estimation error (in logarithmic scale).
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Fig. 4. Evolution of Emulator parameters: τe (dotted line) and ηe (full line).

We note also that a new adaptation of neural emulator occur at time tc.
The output estimation error plotted in logarithmic scale indicate the satisfied
emulation performances as shown in Fig. 3. Figure 4 illustrates well adaptation of
emulator parameters. Then, the efficiency of the proposed approach to emulate
unknown non linear processes as well as linear ones is proved.

2.4 Application to chemical reactors

Process description In this application, we consider a chemical process (Fig.
5), used to esterify olive oil. The reaction carried out in this reactor is a chemical
esterification of the crude acid of olive oil by an alcohol, such as butane, in order
to extract an ester with high quality. The produced ester is widely used for the
manufacture of cosmetic products [15, 1]. The esterification reaction is given as
follow:

Acid + Alcohol ←→ Ester + Water

The ester’s proportion can be increased by vaporization of water. We set that
the acid and the ester ebullition temperatures are approximately 300 ◦C. The
butane is characterized by an ebullition temperature of 118 ◦C. Consequently, the
reactor’s temperature is over 100◦C to get rid of water only [16]. The process
temperature is regulated by means of a fluid circulating through the reactor
jacket. This fluid is heated by three resistors whose electric power can be varied
from 0 to 2500 Watts and located in the heat exchanger (Fig. 5). It is also cooled
in a tubular cooler whose cooling rate is changed by varying the external water
[15].
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Fig. 5. Synoptic scheme of the reactor.

The variables Tede and Tsde are respectively input and output temperature
of double envelope, Tr is the reactor’s temperature and Q is the heating power.
Then, temperature must follow a specific trajectory. This trajectory (Fig. 6)
consists on three stages:

– Heating stage: the reactor’s temperature Tr is increased to 105◦C.
– Reaction stage: the reactor’s temperature Tr is maintained constant during

the reaction (when no more water is dripping out of the condenser).
– Cooling stage: the reactor’s temperature is decreased.

Fig. 6. Reactor’s temperature profile.

Reactor emulation Experimental studies show that the process is non linear
[17]. The static characteristic of the system (Fig.7) illustrates that it can be
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Fig. 7. Static characteristic of the reactor.

considered as piecewise linear in every operating phase: the heating phase, the
reaction phase and the cooling phase.

The reactor is considered as a single input single output system. The output
is the reactor’s temperature Tr. The input is the heating power Q. Then, a two-
neuron neural network is capable to emulate the chemical reactor input-output
mapping. This number of neurons depends only on the input and the output
numbers. The proposed network does not learn the plant dynamics, but only
adapts its parameters. The process sampling time ∆T is chosen equal to 3min
according to the step response of the system. The starting term εe is chosen
equal to 100 so that it ensure the starting and the autonomous evolution of the
algorithm initially zero conditions.
A pseudo-random binary input signal (PRBS) is applied to the real system (Fig.
8). The amplitudes of the signal are chosen so that they focus on the three
reaction stages [15, 16]. Results of neural emulation of the reactor temperature
are given by Fig. 9. The neural emulator provides a satisfactory estimation of the
process output. We notice that in the heating and cooling stages, the estimated
reactor’s temperature is fluctuated consequently to the temperature variation
(depending on the magnitude of input signal). While, during the reaction stage
(when the temperature is maintained stable), the neural emulation is efficient
and capable to estimate the reactor output.
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Fig. 11. Evolution of emulator parameters ηe (full line) and τe (dotted line).

Figure 10 illustrates the square output estimation error plotted in logarithmic
scale. This error prove the efficiency of the neural emulation approach. The
evolution of neural emulator parameters ηe and τe is given by Fig. 11. This
figure illustrates a satisfactory adaptation of the parameters τe, ηe. The obtained
results prove the good performance of the neural emulator method adapted for
the real time emulation of chemical reactor.

3 Neural controller

3.1 Autonomous adaptation algorithm

Neural controller is a fully connected recurrent network similar to NE. This
structure is formed by 2N neurons. The NC inputs are the N plant desired
outputs yci

and the N output error functions (yci
− yi). The N control inputs

ui are the NC outputs. This NC structure is suitable for the control of square
MIMO systems [27, 2].

According to the dynamic activation of neurons, the control signals are cal-
culated, in continuous time, by the following equation:

1

|τc(t)|

d(oi(t))

dt
+ oi(t) = tanh





Nc
∑

j=1

φij(t) oj(t) + zi(t)



 (10)

where, oi(t) is the ith neuron state. φij(t) and 1/|τc(t)| are respectively the
NC weights from jth neuron to ith neuron and the NC adaptive time parame-
ter. zi(t) = yci

(t) − yi(t) if i ∈ OUT . In addition, zi(t) = yci
(t) if i ∈ OUT .

ui(t) = oi(t), if i ∈ IN , represents the ith input signal.
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Let us consider the instantaneous square error between desired output and
measured output defined as in:

Ec (t) =
1

2

N
∑

l=1

(ycl
(t)− yl (t))

2 (11)

The minimization of Ec(t) with respect to the parameters is used for NC weights
adaptation:

dφij(t)

dt
= |ηc(t)|

N
∑

l=1

(ycl
(t)− yl(t))

∂ yl(t)

∂φij(t)
(12)

where, |ηc(t)| is the NC adapting rate. ∂yl/∂φij is approximated by ∂ŷl/∂φij

which is given by:

∂ ŷl

∂φij

=
∑

k∈IN

∂ ŷl

∂uk

∂uk

∂φij

=
∑

k∈IN

Jlk Qkij (13)

According to the NC dynamic behavior given by equation (10), the sensitivity
functions Qkij are calculated as follows:

1
|τc(t)|

dQkij(t)
dt

= tanh′

(

Nc
∑

h=1

φkh(t)oh(t) + zk(t)

)

×

(

δk
i oj(t) +

Nc
∑

h=1

φkh (t)Qhij(t) +
∂zk(t)
∂φij(t)

)

−Qkij(t)

(14)

For k ∈ IN , zk(t) = yck
(t). So, Qkij are given by

1
|τc(t)|

dQkij(t)
dt

= tanh′

(

Nc
∑

h=1

φkh(t)oh(t) + zk(t)

)

×

(

δk
i oj(t) +

Nc
∑

h=1

φkh (t)Qhij(t)

)

−Qkij(t)

(15)

For k ∈ OUT , zk(t) = yck
(t)− yk(t). Consequently, Qkij are computed as in

1
|τc(t)|

dQkij(t)
dt

= tanh′

(

Nc
∑

h=1

φkh(t)oh(t) + zk(t)

)

×

(

δk
i oj(t) +

Nc
∑

h=1

φkh (t)Qhij(t)−
N
∑

µ=1

Jkµ Qµij

)

−Qkij(t)

(16)

The sensitivity functions Jlk are computed as follows, using the NE dynamic
behavior given by equation (2):
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1
|τe(t)|

dJlk(t)
dt

= tanh′

(

Ne
∑

h=1

wlh(t)sh(t) + xl(t)

)

×

(

δl
k +

Ne
∑

h=1

wlh (t)Jhk(t)

)

− Jlk(t)

(17)

3.2 Autonomous adaptation of NC parameters ηc and τc

Based on the same method used for ηe and τe, an algorithm is defined in order
to adapt NC parameters ηc and τc according to the following equations:

dηc(t)

dt
=

N
∑

l=1

(ycl
(t)− yl(t)) Rηc

l (t) (18)

dτc(t)

dt
= |ηc(t)|

N
∑

l=1

(ycl
(t)− yl(t)) Rτc

l (t) (19)

Rηc

l and Rτc

l are considered as small perturbations added to the lth neuron state
consequently to small variations ∂ηc and ∂τc of respectively ηc and τc . We also
consider Rηc

l =Rτc

l =Rl for simplification.

Functions Rl are then computed using the NE dynamic behavior (2) as follows:

1
|τe(t)|

dRl(t)
dt

= tanh′

(

Ne
∑

m=1

wlm(t) sm(t) + xl(t)

)

×

(

Ne
∑

m=1

wlm(t) Rm(t)

)

−Rl(t) + εc

|τe(t)|

(20)

where, εc = dRl

dt

∣

∣

∣

t=0

> 0 guarantee the algorithm starting and accelerates the

controller adaptation from zero initial conditions.

3.3 Simulation results for nonlinear system control

The objective of this simulation is to show the effectiveness of the proposed neu-
ral control structure with decoupled adaptive rates to control nonlinear systems.
For this aim, a non linear system given by (21), is considered [6].

y(k) = 0.4u(k − 1) + 0.3y(k − 1) +
u(k − 1)y(k − 2)(u(k − 1) + 2.5)

1 + u(k − 1)2 + 6.25y(k − 2)2
(21)
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Both tracking and regulation problems are studied according to this simu-
lation example. The proposed simulation include a tracking phase (0-120s) and
also a regulation phase (120-400s). During the regulation phase, at time t=250s,
a disturbance (during 10s) in the form of a step input, with a magnitude of 10
% of the control output, was injected to the system. The terms εe and εc are
chosen equal to 10 and 30 respectively in order to ensure the starting of the
system with zero initial conditions of parameters. The sampling time is chosen
equal to 0.1s.
Fig. 12 illustrates results obtained for control using the same adaptive rates for
emulator and controller compared to control with decoupled adaptive rates. Inde-
pendent adaptation of networks parameters ensure better and faster convergence
of controller to the desired trajectory. Then, we notice that neural structure with
decoupled rates ensure better perturbation rejection with comparison to the one
with the same values of rates for both emulator and controller. Neural networks
parameters are adapted independently, their adaptation is illustrated with Fig.
13 for emulator and Fig. 14 for controller. Values of controller parameters are
not similar to emulator ones. Controller with decoupled rates is more perform-
ing in terms of convergence. Mean square error has been calculated to show the
performance of the proposed method. For neural control with decoupled rates,
mean square error is equal to 5.58 10−7. Therefore, it is equal to 5.14 10−4 for
control with same rates. Satisfactory results obtained confirm the good efficiency
of this structure for tracking and regulation problems.
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Fig. 13. Evolution of Emulator parameters: τe (dotted line) and ηe (full line).
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Fig. 14. Evolution of controller parameters: τc (dotted line) and ηc (full line).

In conclusion, real time adaptation of networks with decoupled rates improve
controller performances. The obtained results prove the performance of the con-
sidered approach for control of nonlinear systems in terms of regulation and
tracking with better disturbance rejection.

3.4 Application to TECP

Process description The Tennessee Eastman challenge process (Fig. 15), pub-
lished by the Tennessee Eastman Company [7], is a real time simulation of a
chemical process that has been used for academic research [11, 12]. The process
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consists of five major units: an exothermic two-phase reactor, condenser, com-
pressor, separator, and stripper. The Tennessee Eastman process involves the
production of two products and an undesired one from four reactants, A, C, D,
and E. In addition, there are two side reactions that occur.
The Tennessee Eastman (TE) problem is a large-scale, continuous, nonlinear
process with 50 states, 41 measurements and 12 manipulated variables [25]. In
addition to the process description, the problem statement defines process con-
straints, 20 types of process disturbances, and 7 operating modes corresponding
to different production rates and G/H mass ratios. A complete description of
these variables and disturbances is presented in [7, 25].

Fig. 15. Tennessee Eastman Challenge Process

Fig. 15 represents the Tennessee Eastman (TE) process taken from Downs
and Vogel. The gaseous products from the reactor pass through a condenser and
from there to the vapor/liquid separator. The noncondensed components recycle
back through the compressor to the reactor feed, and the condensed components
go to the product stripping column to remove the remaining reactants [24].

Process control and disturbance rejection In this work, we are limited to
four measured variables and four controlled ones [25]. The measured variables
are the reactor temperature (RT), the reactor pressure (RP), the separator level
(SepL) and the stripper one (StrL). Then, the manipulated variables are the
purge valve (Purge Valve), the separator valve (Sep Valve), the reactor cooling
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water valve (RCW Valve) and the condenser cooling water valve (CCW Valve).
The sampling period for measurements and for the purge and reactor cooling
water valves is 72 seconds and the one for the stripper and condenser cooling
water valves is 180 seconds. The terms εe and εc are chosen equal to 10 to ensure
the process starting with a minimum normalized mean square error (NMSE) and
in the same time these values ensure the best disturbance rejection. Neural em-
ulator and neural controller networks, both of them formed with eight neurons,
are used for the TECP control in the base case. From zero initial conditions of
the all parameters of these networks, process control is ensured with real time
adaptation of these networks.
To show the efficiency of the proposed approach, many simulations in presence
of different perturbations are carried out [2]. In this paper, wi will present results
obtained from simulation in presence of perturbation IDV(4) (Reactor cooling
water temperature) during 5 hours from t=5h to t=10h. The evolutions of the
reactor temperature, pressure and purge valve are illustrated respectively by Fig.
16, 17 and 18. We note that control with decoupled adaptive rates accelerates
controller adaptation. Independent adapting of networks parameters ensure bet-
ter regulation of temperature and pressure in reactor, and the levels in separator
and stripper particularly during the presence of perturbation and after dynamic
changes. This structure with decoupled rates guarantees also disturbance rejec-
tion. Then, networks parameters adapted independently are shown by Fig. 19
and 20. We note that adaptation with decoupled rates ensure a perfect plant
stabilization with constant parameters. Obtained results prove the efficiency of
this approach.
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Fig. 17. Evolution of reactor pressure (RP).
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Fig. 18. Evolution of Purge valve.
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Fig. 19. Evolution of emulator parameters: τe (dotted line) and ηe (full line).
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Fig. 20. Evolution of controller parameters: τc (dotted line) and ηc (full line).

The global performance of this method is illustrated with the calculation of
the NMSE (Normalized Mean Square Error) criteria given by (22):

NMSE =

Ts
∑

t=1

(yc(t)− y(t))
2

Ts
∑

t=1

(yc(t))
2

(22)

where, Ts is the simulation time. The following table illustrates NMSE calculated
for control with same rates and with decoupled rates in presence of perturbation.
These NMSE are measured during the simulation (20h) and only during pertur-
bation (5h-10h). We note that NMSE is more important for the control with
same rates compared to the one with decoupled rates. Due to perturbation, con-
troller does not regulate temperature in the reactor which affect process control
performances. Results show that independent updating of neural emulator and
controller parameters improve controller performances. A diminution of 22 % of
the NMSE, calculated for the reactor temperature during perturbation which af-
fect particularly RT, is noticed in comparison with control with decoupled rates.
Also a diminution of 53 % of the global NMSE is observed.

NMSE (10−4) Control with same rates Control with decoupled rates
(20h) (5h-10h) (20h) (5h-10h)

Reactor temperature 0.61 0.13 0.035 0.077

Reactor pressure 0.058 0.056 0.019 0.031

Separator level 20 13 6.78 9.06

Stripper level 5.042 5.25 4.97 5.38

Global variables 6.34 4.66 2.95 3.63
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Control with decoupled rates provides efficient plant stabilization with well
adaptation of networks parameters. To show efficiency of our proposed approach
to reject various perturbations, many simulations with other disturbances are
considered. The table below illustrates results obtained for control structure
with decoupled rates in presence of perturbations IDV(3) (D feed temperature)
and IDV(8) (A, B and C feed composition).

Simulation (40 hours) NMSE (10−4) NMSE (10−4)

Perturbation (5h-20h) (40h) (5h-20h)

RT 0.009 0.0089

RP 0.014 0.012

Perturbation (3) SepL 7.92 7.46

StrL 4.95 4.97

Global 3.22 3.11

RT 0.018 0.024

RP 0.051 0.097

Perturbation (8) SepL 29 38

StrL 5.09 5.27

Global 8.61 11

In conclusion, control with decoupled adaptive rates increases the number
of freedom degrees of the adaptive algorithm. Particularly, real time adaptation
of networks improve controller performances and ensure better disturbances re-
jection of the multivariable non linear chemical plant TECP with only four
measurements and four actuators.

4 Conclusion

In this paper, an indirect control structure based on neural emulator is proposed
for nonlinear systems. This structure is inspired from RTRL algorithm. Neu-
ral emulator and neural controller are adapted independently using an online-
adaptation algorithm. Efficiency of the proposed structure with decoupled adap-
tive rates has been established for tracking and regulation problems according to
nonlinear systems simulations. The neural control structure proposed has been
validated on chemical processes. Satisfactory results obtained prove the potential
of the method considered for real plant wide processes.

In our future works, we will consider economic and environmental objectives
in control of complex and large scale square systems in order to minimize vari-
ability of product rate and product quality during perturbations. Extension to
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non square multivariables systems will be studied. Supervision of starting terms
(εe and εc) will be also considered.

References

1. Atig A., Druaux F., Lefebvre D., Abderrahim K. and Ben Abdennour R., Neu-
ral Emulation Applied to Chemical Reactors. ” 7th IEEE International Multi-
Conference on Systems, Signals and Devices (SSD’10)”. Amman, Jordan, 2010.

2. Atig A., Druaux F., Lefebvre D., Abderrahim K. and Ben Abdennour R., Neu-
ral Network Control for Large Scale Systems with Faults and Perturbations. ”
10th IEEE International Conference on Control and Fault-Tolerant Systems (Sys-
Tol’10)”. Nice, France, 2010.

3. Ben Abdennour R., Borne P., Ksouri M. and M’sahli F., Identification et com-
mande numérique des procédés industriels. ”Technip”. Paris, France, 2001.

4. Budik D. and Elhanany I., TRTRL: a localized resource-efficient learning al-
gorithm for recurrent neural networks. ” Proceedings of IEEE Midwest Symp.
Circuits Syst”. Puerto Rico, Aug, pp.371-374, 2006.

5. Chow T.W.S. and Fang Y., A Recurrent neural-network based real time learning
control strategy applying to nonlinear systems with unknown dynamics. ”IEEE
Transactions on Industrial Electronics”. vol.45, no.1, pp.151-161, 1998.

6. Druaux F., Leclercq E. and Lefebvre D., Adaptive neural network control for
uncertain or unknown non linear systems. ”Proceedings of IEEE MMAR”. Poland,
pp.1309-1314, 2004.

7. Downs J.J. and Vogel E.F.A, Plant-wide industrial process control problem.
”Comput. Chem. Eng.”. vol.17, no.3, pp. 245-255, 1993.

8. Ge S.S., Wang C. and Tan Y.H., Adaptive control of partially known nonlinear
multivariable systems using neural networks. ”Proceedings of IEEE International
Symposium on Intelligent Control”. Mexico, pp.292-297, 2001.

9. Ge S.S., Zhang J. and Lee T.H., Adaptive neural network control for a class of
MIMO nonlinear systems with disturbances in discrete-time. ”IEEE Trans. Syst.,
Man, Cybern. B”. vol. 34, no. 4, pp. 1630-1645, 2004.

10. Jeon G.J. and Lee I., Neural network indirect adaptive control with fast learning
algorithm. ”Neurocomputing”. vol.2, pp.185-199, 1996.

11. Juricek B., Seborg D. and Larimore W., Identification of the Tennessee Eastman
Challenge Process Using Subspace Methods. ” Control Engineering Practice”.
vol. 9, pp. 1337-1351, 2001.

12. Juricek B., Seborg D. and Larimore W., Process Control Applications of Subspace
and Regression-based Identification and Monitoring Methods. ” Proceeding of
American Control Conference”. Portland, OR, USA, 2005.

13. Leclercq E., Druaux F., Lefebvre D. and Zerkaoui S., Autonomous learning algo-
rithm for fully connected recurrent networks. ”Neurocomputing”. vol.63, pp.25-44,
2005.

14. Lefebvre D., Zerkaoui S., Druaux F. and Leclercq E., Adaptive control with
stability and robustness analysis for nonlinear plant wide systems by means of
neural networks. ”In Progress in Nonlinear Analysis Research”. chapter. 8, Nova
Science Publishers, pp.187-212, 2008.

15. Messaoud A., Ltaief M. and Ben Abdennour R., Supervision based on partial
predictors for a multimodal generalized predictive control: Experimental valida-
tion on a semi-batch reactor. ”International Journal of Modeling, Identification
and Control”. vol. 6, no. 4, pp. 333–340, 2009.

 Neural emulator and controller with decoupled adaptive rates − A. ATIG et al. 1317 



16. Mihoub M., Nouri A.S. and Ben Abdennour R., Real-time application of discrete
second order sliding mode control to a chemical reactor. ” Control Engineering
Practice”. vol. 17, no. 9, pp. 1089–1095, 2009.

17. M’sahli F., Ben Abdennour R. and Ksouri M., Application of adaptive controllers
for the temperature control of a semi batch reactor. ” International Journal of
Computational Engineering Science”. vol. 2, no. 2, pp. 287–307, 2001.

18. Narendra K.S. and Parthasarathy K., Identification and control of dynamical
systems using neural networks. ”IEEE Transactions on Neural Networks”. vol.1,
no.1, pp.4-27, 1991.

19. Nelles O., Nonlinear system identification. ”Springer”, 2001.
20. Tian L. and Collins C., A dynamic recurrent neural network based controller for

a rigid flexible manipulator system. ”Mechatronics”. vol.14, pp.3187-3202, 2004.
21. Wai R.J., Linn H.H. and Lin F.J., Hybrid controller using fuzzy neural networks

for identification and control of induction servo motor drive. ”Neurocomputing”.
vol.35, pp.91-112, 2000.

22. Williams R.J. and Zipser D., A learning algorithm for continually running fully
recurrent neural networks. ”Neural Computation”. vol.1, pp.270-280, 1989.

23. Williams R.J. Adaptive state representation and estimation using recurrent con-
nectionist networks. ”Neural Networks for Control”. chapter, Mit Press, Cam-
bridge, 1990.

24. Yeh T.M., Huang M.C. and Huang, C.T., Estimate of process compositions and
plantwide control from multiple secondary measurements using artificial neural
networks. ”Computers and Chemical Engineering”. vol. 27, pp. 55-72, 2003.

25. Yan M. and Ricker N.L., Multi-Objective Control of the Tennessee Eastman
Challenge Process. ” Proceeding of American Control Conference”. Sealtle, Wash-
ington, 1995.

26. Zerkaoui S., Druaux F., Leclercq E. and Lefebvre D., Stable adaptive control
with recurrent neural networks for square MIMO nonlinear systems. ”IFAC WC,
International Federation of Automatic Control”. Prague, Tcheque, 2005.

27. Zerkaoui S., Druaux F., Leclercq E. and Lefebvre D., Stable adaptive control
with recurrent neural networks for square MIMO nonlinear systems. ”Engineering
Applications of Artificial Intelligence”. vol.12, no.4-5, pp.702-717, 2009.

28. Zerkaoui S., Druaux F., Leclercq E. and Lefebvre D., Indirect neural control for
plant-wide systems: Application to the Tennessee Eastman Challenge Process. ”
Computers and Chemical Engineering”. vol. 34, pp. 232-243, 2010.

29. Zhang J., Batch to batch optimal control of a batch polymerization process based
on stacked neural network models. ” Chemical Engineering Science”. vol. 63, pp.
1273-1281, 2008.

30. Zhiong M., Wu H.R. and Palaniswami M., An adaptive tracking controller using
neural network for a class of nonlinear systems. ”IEEE Transactions on Neural
Networks”. vol.9, no.5, pp.947-955, 2008.

1318   IJ-STA, Volume 4, N°2, December, 2010.      


