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Abstract: Stochastic simulation of complex biochemical networks is a 
topic of current interest, in spite of the importance of the Gillespie 
algorithm it requires substantial amount of computational effort to simulate 
a complex system, Many algorithms are available now to control the two 
most important parameters in simulation: speed and accuracy. It can be 
proved that the stochastic modelling approach provide a conceptual bridge 
between stochastic chemical kinetics (the CME and SSA) and conventional 
deterministic chemical kinetics (the RRE). 
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1. Introduction 

Through this paper we will outline the foundations of stochastic chemical kinetics 
beginning  from the chemical master equation (CME), then the numerical realization of 
the stochastic process using a Monte Carlo strategy known as  the stochastic simulation 
algorithm (SSA), followed by the approximate accelerated algorithm called  the tau-
leaping with its two essentials versions ( explicit and implicit), next we can under certain 
conditions prove that the tau leaping can lead to the stochastic differential equation 
which called the chemical Langevin equation (CLE), and when the molecular 
populations of the reacting species become  larger (in the thermodynamic limit) the CLE 
can in turn sometimes be approximated by an ordinary differential equation called the 
reaction rate equation (RRE). Finally we will provide a detailed description of the 
stochastic algorithms (which rarely found in literature), compare and discuss their 
efficiency with some examples. 
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2. The chemical master equation 

We consider a well-stirred system of molecules of N chemical species {S1,…, Sn} 
interacting through M chemical reaction channels:  R1,…Rn. The system is assumed to 
be confined to a constant volume, and to be in thermal equilibrium at some constant 
temperature. With Xi(t) denoting the number of molecules of species Si in the system at 
time t, we want to study the evolution of the state vector X(t) = (X1(t),…XN(t)) given 
that the system was initially in some state X(t0) = x0. Each reaction channel Rj is 
assumed to be “elemental" in the sense that it describes a distinct physical event which 
happens essentially instantaneously. Elemental reactions are either unimolecular or 
bimolecular; more complicated chemical reactions (including trimolecular reactions) are 
actually coupled sequences of two or more elemental reactions. The system of 
biochemical reactions can be described as follow: 
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- Rj = reaction j   (j = 1, 2, ..., M) 
- M = number of reactions 
- N = number of species 
- Xi = X1,X2,..., XN =  molecules of species i in the system 
- Let hμ = Number of possible combinations of reactant molecules involved in 

reaction μ 
- The rate constant cμ 
- aμ   = the probability of reaction μ  occurring in time interval (t; t + dt) 
-    dt*   c *  h  =dt  a  μμμ

 
By considering a discrete infinitesimal time interval (t; t+dt) in which either 0 or 1 

reaction occur, thus it exists only M + 1 distinct configurations at time t that can lead to 
the state X at time t + dt and as such, we can write our resulted probability function at 
time t + dt as a function of all possible precursor states at time t (Markov chain) 
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- P(X, t + dt) : Probability to have X at t+dt time 
- P(X, t) : Probability to have X at t time  

-                      ∑
=

M
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(x)dt a-1  = dt)over  change state P(no
μ
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-P(X- vμ  ,t) : Probability to be in state different from X, at t time 
-vμ   is a stoichiometric vector defining the result of reaction μ   on state vector X 
If we then note that dttXPdttXPdttXPOdt /);(/);();(lim   ∂=−+→  

we can write now the chemical master equation that describes the stochastic 
dynamics of the system as (McQuarrie, 1967; Gillespie, 1992a): 
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This is the chemical master equation (CME). In principle, it completely determines the 
function P(x, t | x0, t0) But the CME is really a set of nearly as many coupled ordinary 
differential equations as there are combinations of molecules that can exist in the 
system! So it is not surprising that the CME can be solved analytically for only a very 
few very simple systems, and numerical solutions are usually prohibitively difficult. To 
rise above this difficulty we can think at the reaction rate equation (RRE) of traditional 
deterministic chemical kinetics which can be described as: 
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and proceed by probabilistic way as we will see later. 

3. The Stochastic Simulation Algorithm (SSA) 

Since the chemical Master equation is rarely of much use in computing the 
probability density function P(x,t |x0,t0) of X(t), we need another computational 
approach. One approach that has proven fruitful is to construct numerical realizations of 
X(t), i.e., simulated trajectories of X(t) -versus-t . This is not the same as solving the 
CME numerically, as that would give us the probability density function of X(t) instead 
of samplings of that random variable. However, much the same effect can be achieved 
by either making a histogram or averaging the results of many realizations. The key to 
generating simulated trajectories of X(t) is not the CME or even the function P(x, t 
|x0,t0), but rather a new function, P(τ,j |x,t) (Gillespie, 1976). It is defined so that P(τ,j 
|x,t) dτ is the probability, given X(t) = x, that the next reaction in the system will occur in 
the infinitesimal time interval [t + τ; t +τ + dτ] and will be an Rj reaction. Formally, this 
function is the joint probability density function of the two random variables "time to the 
next reaction" (τ ) and "index of the next reaction" (j). To derive an analytical expression 
for P(τ,j |x,t)  , we begin by noting that if P0(τ | x, t) is the probability, given X(t) = x, 
that no reaction of any kind occurs in the time interval [t; t + τ ], then the laws of 
probability imply the relation [9] 
  (x)d a*  t) x,| P0( =  d  t) x,|j , p( j ττττ  

The laws of probability also imply: 
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An algebraic rearrangement of this last equation and passage to the limit dτ 0 results in 
a differential equation whose solution is easily found to 
  (x), aj   =(x)a   where),   (x)exp(-a =  t) x,| (P
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When we insert this result into the equation for p, we get: 
 j 0p(  , j| x, t)  = a (x) exp(-a (x)  ) τ τ  
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 The Equation above is the mathematical basis for the stochastic simulation approach. It 
implies that the joint density function of  τ  and j can be written as the product of the τ-
density function,  )  (x)exp(-a (x)a 0 0 τ and the j-density function, aj (x)/a0(x). We can 
generate random samples from these two density functions by using the inversion 
method of Monte Carlo theory (Gillespie, 1992b): Draw two random numbers r1 and r2 
from the uniform distribution in the unit-interval, and select τ  and j according to: 

 01/ ( ) ln(1/r1)a xτ =   

j = the smallest integer satisfying 
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Thus we arrive at the following version of the stochastic simulation algorithm (SSA) 
(Gillespie, 1976; Gillespie, 1977). 
 
1. Initialize the time t = t0 and the system's state x = x0. 
2. With the system in state x at time t, evaluate all the aj (x) and their sum 
a0(x). 
3. Generate values for τ  and j. 
4. Effect the next reaction by replacing t  t + τ  and x  x +vj. 
5. Record (x; t) as desired. Return to Step 2, or else end the simulation. 
 
Algorithm 1: The SSA method  
 
Init(Tstart, Tfinal,C,X,V,a0,T) 
WHILE((T<=Tfinal)&& (a0>0)) 
compute(a) 
a0 sum(a) 
IF (a0>0) 
r1 rand(1) 
r2 rand(1) 
tau (-1/a0)*log(r1) 
j 1 
cpt a(1) 
WHILE(cpt<r2*a0) 
J j+1 
Cpt cpt+a(j) 
END 
T T+tau 
X X+V(:,j) 
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END 
END 

4. The Tau leaping 

The SSA and the CME are logically equivalent to each other; yet even when the 
CME is completely intractable, the SSA is quite straightforward to implement. The 
problem with the SSA is that it is often very slow. The source of this slowness can be 
traced to the factor 1/a0(x) in the τ computing formula : a0(x) can be very large if the 
population of one or more reactant species is large, and that is often the case in practice 
[4,8]. 

One approximate accelerated simulation strategy is tau-leaping (Gillespie, 
2001). It advances the system by a pre-selected time τ which encompasses more than 
one reaction event. In its simplest form, tau-leaping requires that τ be chosen small 
enough that the  Leap Condition is satisfied: The expected state change induced by the 
leap must be sufficiently small that no propensity function changes its value by a 
significant amount. The main idea of this method is to select many reactions in the same 
tau time to accelerate the speed of our algorithm. We recall that the Poisson random 
variable P(a, τ) is by definition the number of events that will occur in time τ given that 
a dt is the probability that an event will occur in any infinitesimal time dt, where ‘a’ can 
be any positive constant. Therefore, if X(t) = x, and if we choose τ small enough to 
satisfy the Leap Condition, so that the propensity functions stay approximately constant 
during the leap, then reaction Rj should fire approximately Pj (aj (x)*τ ) times in [t; t +τ 
]: Thus, to the degree that the Leap Condition is satisfied, we can 
leap by a time  τ  simply by taking (Gillespie, 2001; Gillespie & Petzold, 2003): 

                              ∑
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It will result in a faster simulation than the SSA to the degree that the total number of 
reactions leapt over the tau time is large compared to M. In order to use this simulation 
technique efficiently, we obviously need a way to estimate the largest value of τ  that is 
compatible with the Leap Condition. One possible way of doing that (Gillespie & 
Petzold, 2003), is to estimate the largest value of τ for which no propensity function is 
likely to change its value during τ by more than ε*a0(x), where ε (0 < ε << 1) is some 
pre-chosen accuracy control parameter.  
 
 The main problem for the tau leaping is: how to choose the tau time that respect the 
two constraints , τ must be so small that the propensity functions stay approximately 
constant during the leap, and τ must be so large that many reactions can fire many times 
?. Gillespie and petzold (in 2003) showed that the largest value of τ that satisfies these 
conditions can be estimated as follows [1, 5]:  
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The first Expression is the a jacobian matrix that compute the relative change of 

the propensities functions depending on the species concentrations, the second is the 
average of this change, and the third is the variance. Tau time must be taken according to 
the next formula : 

(3)    { }(x)/(x))a( ,(x)(x)/amin 2 j20j0 M][1,j σεμετ ∈=  

More later (in 2006) Cao and Gillespie have proposed a new tau-selection procedure as 
follows: 

(4)    { }{ { } }2 2
i i i i' min max x /g , l (x) ,  max ( / , / ( )ix gi l i xτ ε μ ε= σ  

Algorithm 2: The Tau leaping Method (with formula 3) 
 
Init(Tstart, Tfinal,C,X,V,a0,T,eps) 
WHILE((T<=Tfinal)&& (a0>0)) 
compute(a) 
a0 sum(a) 
IF (a0>0) 
jac compute-jacobian(aj(xi)) 
fii jac*v 
mu fii*a 
sigcarre (fii.^2)*a 
errglob eps*a0 
tau min(errglob/mu(x),errglob^2/sigcarre) 
T T+tau 
M Generate_M_Poissonv(a(j)*tau) 
X X+V*M 
END 
END 

 
 
Although the tau leaping method is so attractive in the sense that it accelerate the time 
running of the SSA But it is not as foolproof as the SSA. If one takes leaps that are too 
large, some species populations might be driven negative. moreover this method is not 
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adequate to stiff systems as we will see next. Several strategies have been proposed to 
get around this problem. Tian and Burrage, and independently Chatterjee et al, proposed 
approximating the unbounded Poisson random numbers Kj with bounded binomial 
random numbers [7,18]. But it turns out that it is usually not the unboundedness of the 
Poisson kj's that produces negative populations. 

5. The implicit Tau-leaping method  

Stiffness can be defined roughly as the presence of widely varying time-scales in a 
dynamical system, the fastest of which is stable. It poses special problems for the 
numerical solution of both deterministic ordinary differential equations (ODEs) and 
stochastic differential equations (SDEs), particularly in the context  of chemical kinetics. 
A stiff system has (at least) two time scales. There is a long (slow) time scale for the 
quasi-equilibrium phase, and a short (fast) time scale for the transient phase following a 
perturbation. The more different these two time scales are, the "stiffer" the system is said 
to be. A system of ODEs is said to be stiff if its solutions show strongly damped 
behaviour as a function of the initial conditions (fast evolution in a few time) [1, 11]. 
The restriction of the explicit Euler method  to time steps τ that are on the order of the 
short (fast) time scale makes the method very slow for stiff systems. So it is natural to 
ask if there are other solution methods for which the time steps are not restricted by 
stability, but only by the need to resolve the solution curve. It is now widely recognized 
that a general way of doing this is provided by "implicit" methods (Ascher & Petzold, 
1998), the simplest of which is the implicit Euler method with the next form: 

                                            )X,f(T  +X=X 1+n1+nn1+n τ  

In contrast to the explicit Euler formula: 
 

)X,f(T  +X=X nnn1+n τ  
 

If we consider  )X,f(T  -X-X =)g(X 1+n1+nn1+n1+n τ  
Usually, the most efficient way to numerically solve   is by the Newton 
iteration: 

0 =)g(X 1+n

 
                                            )(x /g')g(X- =X-X nnn1+n

 
Algorithm 3: The Newton algorithm for NLAE 
 
Init( max_iterations , nlae_tolerance ,h) 

Initialise X0 = Xn  
FOR k = 1 TO max_iterations  
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g  Xk-1 - Xn – h* f  
if |g| <nlae_tolerance exit  
calculate  
END  
Xn +1  Xk-1

 

An implicit scheme which takes large steps (on the time scale of the slow mode) 
will do just fine if the fluctuations of the slow manifold are negligibly small. To get the 
implicit formula of the chemical system (Rathinam et al., 2003) we can modify the 
explicit method as follows: 

∑
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The right part of the last formula is simply the Poisson function expressed at time t+ τ , 
the problem is that this function ( ( ( ))pj aj x t τ+  is unknown at time t , then we must 
give it an approximate value . The idea is to use the equation   

                 ττττττ ))(()))(((+ ))((=)))((( +−+++ txajtxajpjtxajtxajpj  

the expression in the right is the sum of two terms the first is the propensity function at 
time t+τ and the next is a zero mean expression , let change this formula by : 

                  )))(())(((())(()))((( ττττ txajtxajpjtxajtxajpj −++=+  , thus we can 
write the implicit scheme as:      
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Or (Y. Cao and L. Petzold 2005) with  trapezoidal form 
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Algorithm 4 : The implicit Tau-leaping method (formula 5) 
 
Init(Tstart, Tfinal,C,X,V,a0,T,eps,N) 
WHILE((T<=tfinal)&& (a0>0)) 
compute(a) 
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a0 sum(a) 

te-jacobian(aj(xi)) 

a 

rrglob/mu(x),errglob^2/sigcarre) 

_Poissonv(a(j)*tau) 

(M(i)-a(i)*tau)*v(:,i) 

ton( max_iterations , nlae_tolerance ,tau,v0,fp,f0) 

 

6. The Chemical Langevin Equation and the Reaction Rate Equation 

g species are larger, we can go 

hat  N(m, σ2 )=m+σ N(0,1), we can deduce that  (Gillespie, 2000; 
Gillespie ) [10]: 

(7) 

Thus:   

IF (a0>0) 
jac compu
fii jac*v 
mu fii*a 
sigcarre (fii.^2)*
errglob eps*a0 
tau min(e
T T+tau 
M Generate_M
FOR j=1:N DO 
cst1
END 
 v0 X; 
compute(fp,f0) 
I New
X i; 
END 
END 

If  the molecular populations of the considered reactin
further in the approximation of our equations as follows: 
The term aj (x) τ  becomes so large that aj (x) τ  >> 1, the physical significance of this 
last condition is that each reaction channel is expected to fire many more times than once 
in the next  τ time. This approximation stems from the purely mathematical fact that the 
Poisson random variable P(a, τ  ), which has mean and variance aτ, can be well 
approximated when aτ >> 1 by a normal random  variable with the same mean and 
variance. Denoting the normal random variable with mean m and variance σ2  by N(m, 
σ2 ), and as we know t

, 2002

  )1,0())(()())(,)(()),(( 2/1 jjjjjjjj NxaxaxaxaNxaP τττττ +=≈  

 τττ )1,0()()()()(
11 jj ==

This equation is called the Langevin leaping formula It evidently expresses the 
state increment X(t+τ )-x(t) as the sum of two terms: a dete nistic drift term 
proportional to τ , and a fluctuating diffusion term proportional to 

jj
M

j
M

jj NxavxavtXtX ∑∑ ++≈+  

rmi
τ  . It is important 

to keep in mind that this equation is an approximation, which is valid only to the extent 
that τ is  small enough that no propensity function changes its value significantly during 
τ , yet  large enough that every reaction fires many more times than once during τ . The 
next formula is underscored by the fact that X(t) therein is now a continuous (real-
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is called the chemical Langevin equation (CLE) (Gillespie, 2000; 
Gillespie, 2002): 

(8)    

valued) random variable instead of a discrete (integer-valued) random variable; we lost 
discreteness when we replaced the integer-valued Poisson random variable with a real-
valued normal random variable. The Langevin leaping formula  gives faster simulations 
than the tau-leaping formula  not only because the condition aj (x) τ  >> 1,  implies that 
very many reactions get leapt over at each step, but also because the normal random 
numbers that are required can be generated much more easily than the Poisson random 
numbers (Press et al., 1986). If we subtract x from both sides and then divide through by 
dt , the result can be shown to be the following (approximate) stochastic differential 
equation, which 

)())(())((/)(
11 jj ==

The Γj (t) here are statistically independent “Gaussian white noise" processes. Molecular 
systems become “macroscopic" in what physicists and chemists call the thermodynamic 
limit. This limit is formally defined as follows: The system volume  and the species 
populations Xi all approach ∞, but in such a way that the species concentrations Xi  all 
remain constant. To discern the implications of those formulas in the thermodynamic 
limit, we evidently need to know the behaviour of the propensity functions in that limit. 
It turns out that all propensity functions grow linearly with the system size as the 

ttXavtXavdttdX j
M

jj
M

jj Γ+≈ ∑∑  

thermodynamic limit is approached. It follows that, as the thermodynamic limit is 

approached, the deterministic drift term (∑
M

=

vjaj  ) grows like the size of the system, 

 limiting approximations to the stochastic theory that 
underlies the CME and the SSA 

(9)        RRE:    == ∑

j 1

while the fluctuating diffusion term grows like the square root of the size of the system, 
and likewise for the CLE . This establishes the well known rule-of-thumb in chemical 
kinetics that relative fluctuation effects in chemical systems typically scale as the inverse 
square root of the size of the system. In the full thermodynamic limit, the size of the 
second term on the right side will usually be negligibly small compared to the size of the 
drift term, in which case the CLE can be reduced to the RRE (drift term). Thus we have 
derived the RRE as a series of

 1..N)(i           ))((/)(
1=

M
jiji tXavdttdX  

 will recognize it as an 
ler-Maruyama discretization of the continuous time problem 

     

j

Now, if we return to the CLE with its numerical form (7), readers familiar with 
numerical methods for stochastic differential equations (SDEs)
Eu

)())(()((* =dX(t) 
11 jj ==

where the Wj(t) are independent scalar B

tdwjtxajvjdttxajvj
MM
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rownian motions, the next code presents how 
e can simulate the Brownian motion. w
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Algorithm 5 : The Brownian motion 

,dw) 
p 

 W(j-1) + dW(j); 
ND 

de presents how we can implement the CLE with an 
uler-Maruyama discretization 

lgorithm  6 : The Chemical langevin equation 

N,tau,M,Som) 
<=Tfinal)&& (a0>0))  

 sqrt(abs(tau*a(j)))*randn)*SM(:,j) 
som+Ad(j) 

om 
tau 

END 

resents the choice of the best method 
dependin  these variables ( not always true !) . 

 
P  

 
Init(Tfinal,step,w
N Tfinal/ste
FOR j = 1:N 
alea randn; 
dW(j)  sqrt(step)*alea  
W(j) 
E
 

The next code presents co
E

 
A
 
Init(Tstart, Tfinal,C,X,SM,a0,T,eps,
WHILE ((T
compute(a) 
a0 sum(a); 
FOR j=1:M 
Ad(j)  (tau*a(j) +
Som
END 
X  X + s
T T+

7. Application and Results  

In this section we will see how we can decide or choose the best method for a given 
system? . As we have seen before, there are two criteria for the choice: the population 
size and the stiffness of the system. The population size considered can be large or small 
(or ‘mixt’ where some species are of large size and others are not) , the system can be 
stiff or non stiff . Let the variable ‘Nat’ be a set of two values ‘S’ and ‘NS’, Nat={‘S’, 
‘NS’ }, and the variable ‘pop’ is a set of three values ‘Allbig’, ‘Allsmall’  and ‘mixt’, 
pop={‘Allbig’, ‘Allsmall’, ‘mixt’}, the next table p

g on

OP/NAT S NS 
Allbig RRE ( plicit) RRE LE) or  Im  (or C

Allsmall SSA SSA 
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Mixt Implicit Explicit 
We can add that even the explicit or the implicit method can use in its internal code an 
appel to SSA techniques or adaptative tau selection  ( ex. interlaced implicit  down-
shifting) for the tau choice, in the limit where the species size becomes so small that the 
tau leaping formula can’t give a good choice. In general there is no way to predict the 
nature of the system !, because if the system presents dynamical behaviour such that in 
one time period it is stiff but in another time period it is non stiff, we can not resolve the 
system efficiency with one method, we must necessarily use an adaptive simulation 
strategy to automatically switch between explicit and implicit tau leaping methods and 

 present the Decaying-Dimerizing 
eactions. The system is presented as follows [11]: 

 S1   
2  S3 

itions vector X0=(400,798,0) 
d final time=0.2 sec , the curves obtained  are the next : 

                  Fig1: SSA                                                         Fig2: Explicit tau 

                Fig3: Implicit tau  

mple is  the  Lotka volterra or predator-prey model, presented as follows : 

 2 Y2 

Dam d fluctua ns 

even mix the three methods in some stiff systems. 
To see the effect of stiffness in simulation we
R
 
S1  Ø      
S1+ S1  S2   
S2  S1+
S
 
With parameters vector: C=(1, 10 ,1000,0.1) , initial cond
an
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 pe tio
  
 
 
 
 
 
Another exa
Y1  2 Y1 
Y1+Y2 



1280   IJ-STA, Volume 4, N°2, December, 2010.         

Y2  Ø 
With parameters vector: C=(0.1, 0.002 ,5e-4) , initial conditions vector X0=(100,50) and 

nal time=10 sec , the curves obtained  are the next : 

                  Fig4: SSA                                             Fig5: Explicit tau 

        Fig6: Implicit tau 
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The time running of each method was presented in the next table (Computer: 

Pentium 4 w
S

Decaying-
merizin

SSA 93,49  0.16 
Explicit 0.654 0.013 
Implicit 3.061 0.04 

 
plications that we have made with some systems, we can 

co

- 
d, nevertheless its slowness  in large population systems  case make it 

- plicit tau leaping efficiency depends on the efficiency of the tau 

- w a topic of future research, such algorithm 
that can rise above  speed and accuracy 

 

Through many ap
nclude the next results: 

The SSA is until now the more straightforward algorithm and its stability is 
guarantie
useless 
The explicit and im
selection formula  
An efficient generic algorithm is until no
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8. Conclusion 

Through this paper we have seen some numerical methods (based on Gillespie and 
al. group research) to solve stochastic differential equations in biochemical systems from 
the chemical master equation to the RRE, we have proved that there is a logical relation 
between both, and that each chemical system have its own and best method to be 
simulated. It remains until now, that there is no way to find a generic algorithm that can 
solve all the kind of systems (see slow scales algorithms and the new algorithm 
Weighted Stochastic Simulation Algorithm WSSA [16,18]) , especially the stiff systems 
(most cases of biochemical systems)  , which remains the challenge for the future 
research  [1] . For further information refer to our web site : 
http://automatictn.wikispaces.com, biosystèmes section)  
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