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Abstract. Stability, performance requirements in fuzzy control of 
Takagi–Sugeno systems are usually stated as multiple sums of 
terms involving degrees of freedom, such as the gains of the 
controllers, and matrices of the model, such as the state 
transition matrices. These summations of complex terms are 
weighted by non linear terms, called membership functions, 
which have to be removed to obtain standard conditions, such as 
Linear matrix inequalities (LMIs). Such a step is called a 
relaxation. Many researches have been performed on this topic, 
leading to only sufficient conditions. Recently two similar results 
have applied the Polya’s theorem to obtain sufficient and 
necessary conditions through a set of bigger and bigger LMIs. 
However problems become quickly intractable. This paper
proposes to apply Sum of Squares (SOS) approaches, and show 
that the conditions are in fact more effective than those based on 
the Polya’s theorem.

1 Introduction

Since the work of Takagi and Sugeno  [16], fuzzy control and fuzzy 
observation of non linear model have known an increasing success. 
This is due partly to the ease of the modelling, and partly to the linear 
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conclusion rules, which makes possible the use of the powerful tools of 
the linear control theory such as Linear Matrix Inequalities (LMIs), 
when the stability is related to a Lyapunov function.

Usually the almost final step is checking the positivity or negativity 
of a multiple sum of the type:

   
1 1

r r

i j ij
i j

h z h z
 

 (1)

Where r  is the number of rules, ih  are nonlinear functions called 

membership functions which respect a convex sum property, z  is a 
vector of usually measurable variables. Finally ij  are terms that are 

more or less complex, depending on the problem (stability, or H

control, and so on…) and depending on many matrix terms such as 
gains of the controllers, matrices representing the model, slack 
variables…

The last step is the so called relaxation, and is the removal of ih

terms from the equation (1) to obtain a finite number of LMIs that can 
be solved with standard software, such as Lmilab from Mathworks.

For a very long time it was sought that the relaxation step could only
deliver sufficient conditions, because the information about the ih

functions was lost, expect their convex sum property. So many papers 
tried to obtain less and less conservative sets of LMIs for a given sets 
of ij . In this paper we do not tackle the definition of these terms and 

the possibility to obtain also less conservative conditions by 
introducing more degree of freedom in the ij .

Recently two papers  [13],  [9] prove that the relaxation could propose 
finite sets of LMIs that were sufficient but also necessary. The proof 
was based on the Polya’s theorem, because it is a result concerning 
homogenous polynomials. Indeed (1) can be seen as a homogenous 
polynomial of the variables ih . The two papers are similar, the second 

one  [9] proposing an improvement based on a modified ij  with the 

Finsler lemma. Indeed it has been proved that the Finsler lemma can 
help reducing the conservativeness of the LMI problems associated to 
given ij  [2],  [3].
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It is worth mentioning also a recent paper from  [6] that proposes sets 
of finite LMIs that are necessary and sufficient, by increasing 
progressively the number of rules.

These three approaches suffer from a problem of size: the LMIs 
problems become bigger and bigger when trying to obtain necessary 
conditions. At some point the LMIs problems are so big that they 
cannot be solve.

In this paper we propose another different approach to try to reduce 
the conservativeness of the relaxation step. Contrarily to the three 
previous approaches, we do not obtain necessary conditions. However 
we prove numerically that the associated problems, that are no longer 
written as a set of LMIs, can be solve much more efficiently and that 
outperform the LMIs based on the Polya’s theorem or the ones based 
on an increased number of rules.

The approach we propose in based on Sum-of-Squares 
decompositions (SOS). SOS and LMIs are both semidefinite problems. 
SOS problems were introduced and begun to spread ten years ago, with 
the works of  [10],  [12].

Basically SOS problems try to decompose a polynomial as a sum of 
squares to check its positivity. To see how SOS problems intervene in 
the relaxation step, simply recall that (1), as for the use of the Polya’s 
theorem, is a polynomial of the variables ih . Instead of obtained a set 

of LMIs condition with approaches based on the Polya’s theorem, we 
will simply have one – but rather complex- SOS condition.

We will see on a numerical example that this approach is much more 
efficient that previous ones. This example concerns the stabilization of 
a continuous fuzzy model, but the approach can be applied also on 
discrete model, and on any classical control or observation problems, 
provided the ij  are given.

2 Fuzzy models, relaxation and SOS problems

2.1 Fuzzy models

Consider a nonlinear model
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           
      

x t f z t x t g z t u t

y t k z t x t

  





(2)

where   nx t   is the state vector,   py t   the output, 

  mu t   the input, and   qz t   the vector of the premises which 

involves parts of  y t  and  u t . The functions , ,f g k  are assumed to 

be smooth.

We will use in this paper the following notation :

 , , , , ,...Y A B C H P :   
1

r

z i i
i

Y h z t Y


   and

     
1 1

r r

zz i j ij
i j

Y h z t h z t Y
 

 .

A fuzzy model is obtained if it is possible - at least locally - to 
rewrite (2) as:

         

      

1

1

r

i i i
i

r

i i
i

x t h z t A x t B u t

y t h z t C x t





  

 








(3)

The integer r denotes the number of rules; functions ih  are such that 

  0ih z   1,...,i r   and  
1

1
r

i
i

h z


 . iA , iB , iC  are constant 

matrices, but are matrices. In this paper is assumed that all the pair of
matrices  ,i iA B  are controllable.

2.2 Conditions of stabilization

In this paragraph we detail the ij  that will be used in the numerical 

example.
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With a quadratic Lyapunov function   TV x x Px  with 0P  , a 

basic condition for the stabilisation of (3) with a control 

      
1

r

i i
i

u t h z t F x t


  is (4)

0zz  (5)

with zz  as in (1), and with ij  given by:

T T
i i i j j iA X XA B N N B   (6)

where 1X P , j jN F X  and    zu t F x t

First relaxation procedures lead to the next set of LMIs conditions
 [17]:

1...i r 0ii 

1... , ...i r j i r  0ij ji    (7)

Various relaxations followed, in  [5],  [7],  [4]. They involved either 
no further decision variables, as in  [19], or new variables  [5],  [7],  [4] in 
the right side of the inequality (5).

We present now the best previous set of LMIs conditions, coming 
from the application of the Polya’s theorem in the relaxation step, and 
the use of the Finsler lemma in the ij  of (6).

Theorem 1  [9]. Model (3) is stabilizable by a control law 

   zu t F x t  if the following LMIs are checked:

   
  
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  




           



 





 1i g d   (8)
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Where T
k k nT A I    , 0 n nX   , 2n n

iS  ,  i g , 

1g  � , 1d  � , m n
jN  ,  1,...,j r ,     is a multi 

index, such as 1 2... r     with 1 ... r      and    is the set 

of all possible combinations of such multi indexes, ke  is a null vector 

of size r  except for a 1 at the place k , and       1 2! ! ... !ri i i i  . 

If these LMIs are checked, then the controller gains are defined by 
1

i iF N X  .

Remark 1. Readers unfamiliar to the Polya’s results can see the set 
of LMIs becoming bigger and bigger first through the parameter d  that 
rules the size of the resulting LMIs. We know that for a finite d  the 
problem (8) becomes necessary. The drawback is that d  may be too 
large to be able to solve (8). Second g  is a degree of freedom 
introduced in  [9] that allow a faster convergence for a fixed d . It 
allows the slack variables 2n n

iS   to be a multi sum too.

Authors of  [9] also says that non PDC control laws could be use, 
with jN  being also multi sums, but no results are provided for this 

issue. This possibility is not studied in this paper too either, the 
motivation of this paper is to propose another way of relaxing 
conditions through Sum of Squares.

2.3 Sums of Squares

A scalar polynomial  f z is a sum of squares (SOS) if there exist

polynomials  if z , for 1,...,i v  such that    2

1
i

i v

f z f z
 

   [10]. It is 

obvious that a SOS polynomial is positive, but the converse is not true 
in general. However, experimental results show that there is only a 
small difference between a positive function and its approximation 
obtained as a sum of squares [12]. Moreover for polynomials of order 2 
there is equivalence.

Thus, in the paper, conditions such as “   0f z  ” will be replaced 

by “  f z  is a SOS”. This last condition can be rewritten as a convex 
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problem, and standard solvers for LMIs can be used. The free toolbox 
of Matlab called SOSTOOLS aims to translate SOS conditions as LMIs 
conditions  [12]. Remark also that conditions of the type “   0f z  ” are 

transformed into “  f z   SOS” with 0  .

Now assume we want to check the positivity of  f z  only for z

belonging to a subset of n
  that is a defined by polynomial constraints. 

Then proposition 1 allows defining a new problem to take into account 
the local search.

Proposition 1. (Local study).   0Tv f z v   is positive with v  and z

tow variables of n
 , when   0kc z  , 1...k s , with f  and kc

polynomials, when      
1...

, 0T
k k

k s

v f z v v z c z


  , with 

 , 0k v z   being polynomials of order 2 with respect to v . 

The proof is given in  [12] and is similar to the S-procedure, but with 
polynomials for the multipliers.

3 Relaxation based on SOS conditions

In fact it is very easy to apply a SOS approach for a relaxation step, 
and only a very small proof is required. We simply have to check with 
SOStools if a given polynomial is positive or not. The only problem is 
to take into account the constraint about its variables, here the ih  terms. 

Proposition 1 is used.

Recall that we want to check (5) that we rewrite for clarity:

   
,

0zz i j ij
i j

h z h z    (9)

With ij  involving decision variables as well as data from the 

model, and.

0, 1i ih h  (10)
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Theorem 2 (SOS relaxation)

Equation (9) is verified with the ih  functions respecting (10) if the 

next problem is verified:

   
1

, 1
r

T T
zz i i i i

i

v v v h h h v v 


      is SOS (11)

With v  symbolic variables of the same order than zz , ih , 

1... 1i r   symbolic scalars, 
1

1

1
r

r i
i

h h




   a symbolic constant, and 

 ,i iv h  positive polynomials of order 2 with respects to v .

The proof is trivial when the issue of the constraints is solved. We 
have r  symbolic variables ih  which respect (10). By substitution, we 

can delete one variable with 
1

1

1
r

r i
i

h h




  . Now remains the fact that all 

functions  ih z  must belong to  0,1 , which is replaced by constraints 

of the type  1 0i ih h  .

For the numerical comparison of section 4, we provide conditions 
with detailed ij :

Theorem 3

Fuzzy model (3) is stable in closed loop with a control law 

   zu t F x t  if there exist 0 n nX   , 2n n
iS  ,  1,...,i r , 

m n
jN  ,  1,...,j r , such as theorem 2 is true with:

0

T T
T T k j j k

ij i j j i

n

B N N B X
S T T S

X

 
     

 
, in where T

j j nT A I   

(12)

If these conditions are satisfied, controller gains are given by 
1

i iF N X  .
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Remark 2. In theorem 3 the slack variables iS  have been simplified 

compared to theorem 1, since there are only r  of them, leading to only 
a double sum zz . Of course we could also introduce more variables, 

with iS replaced by ijS , leading to multiple sum indexes 
0nz

 with 0n

of any order. Simply theorem 3 should be adapted to handle polynoms 
in ih  of order 0 1n  . Also better results could be expected when 

considering higher order variables control laws, for example with 

     
,

zz i j ij
i j

u t F x t h h F x t  . In the comparison section we have 

tested a problem with a triple sum zzz  corresponding to ijS  and ijF . In 

this case the answer is negative.

Remark 3. As said in the previous section, for polynoms of order 2 
there is an equivalence between   0f z   and  f z  SOS. (9) is a 

polynom of order 2 with respect to the ih , but the equivalence is lost, 

due to the constraints that are included in the SOS condition.

Remark 4. Of course theorem 3 concerns only a feasibility problem. 
Any optimization step can be added to it. For example in the numerical 
comparison we have added constraints about the controller gains, as in 
 [2], which is very easy. In this case, the constraints to add to (11) are:

 1,...,i r     0
T
i

i

X N

N 
 

 
 

(13)

Where  is a given constant, or a variable to minimize.

Remark 5. With a SOS formulation, it is very easy to include further 
relations about the ih , if they can be written as polynoms. 

4 Numerical comparison

4.1 The model

This is a 3 rules fuzzy model, defined by the next matrices :
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1

1.59 7.29

0.01 0
A

 
  
 

, 2

0.02 4.64

0.35 0.21
A

 
  
 

, 3

4.33

0 0.05

a
A

  
  
 

1

1

0
B

 
  
 

, 2

8

0
B

 
  
 

, 2

6

1

b
B

  
   

4.2 The solvers

LMIs associated to theorem 1 are build with the Matlab code. They 
use YALMIP as the parser.

SOS conditions of theorem 3 are built with the SOS module of 
YALMIP.

In both cases the solver is SEDUMI. 

4.3 Comparisons.

We take  [9] for the comparison, since it slightly improves  [13] and is 
more robust numerically. For reference about the computation time, an 
athlon x2 4000+ is used with 2 Gigabytes of memory. Results are given 
in table 1.

2a  4a  6a  9a 

 [9] 6.5b  7.5b  9b  10b 

SOS approach 6.5b  7.5b  9b  10.5b 

Table 1. Comparison with results obtained with  [9], for 5n   for the 
Polya’s theorem, and the SOS approach. Solutions are obtained in less 
than 1 second in both cases. There is no improvement for 15n   for 
reference  [9], which takes 7 seconds to be solved.

As can be seen from table 1, results are similar for both approaches, 
and this shows that the SOS approach can provide accurate results 
quickly while being able to conveniently add information about the ih

functions.

For reference  [9], there are 33 decision variables and 147 LMIs 
rows. For the SOS approach without remark 4, there are 90 decision 
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variables and 29 LMIs rows, and with the remark 4 enforced, there are 
108 decision variables and 38 LMIs rows. Rising n  with  [9], does not 
increase the number of decision variables, but the number of LMIs 
rows raises quickly.

Figure 1 shows a simulation of the model, for 2a  , when the 
premises are given by:

 2
1 11 cosw x  ,  2

2 21 sinw x  , 1 1 2h w w ,  2 1 21h w w  , 

3 1 21h h h  

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure. 1.  1x t  (in blue) and  2x t  (in green) for the example, 

when 2a  , 6.75b  .    1 86 45F    ,  2 657 399F    , 

   3 113 823F   ( 310  for the remark 4).

On figure 2 we have plotted the highest eigenvalue of zz  when 

varying 1h  and 2h  on a grid (of course it should be negative).
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0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.04

-0.03

-0.02

-0.01

0

h1h2

Figure 2. Highest eigenvalue of zz  when varying 1h  and 2h  (the 

maximum is -5e-5)

As said in the remark 2 we can try to improve results of theorem 3 
by adding more degrees of freedom in the slack variables and the 
controllers gains. We have tested in particular the case of double 
indexes for ijS  and ijF  to obtain a triple sum zzz . We did not notice 

any improvements over table 1.

5 H  Control

Let be the following TS model :

z wz uz

z wz uz

x
A B Bx

w
C D Dz

u

 
               


(14)

with nx  the state of the system, qz  the output, mu  the 
control, and w  an exogenous input.



1432 IJ-STA, Volume 4, N°2, December, 2010.

The H  control problem consists in finding a control law u  which 

minimizes   such that, with 0 0x  :

w , 0T  : 
2 22

0 0

T T

z dt w dt 

Lemma 1. [20]
There exists a linearly parameter-dependent state feedback control 
gain m n

zF � (4) that quadratically stabilizes the T-S fuzzy system 

(14) with an H guaranteed cost 0  if and only if there exist a 

symmetric positive definite matrix n nP � , linearly parameter-
dependent matrices m n

iN � and 2n p q n q
iS    � such that

2' ' 0zz zz z z z z n p qQ S T T S       (15)

With

2

' ' 0 ' '

* 0 0 0

* * 0

* * *

z z z z n q z z

n n q n p
zz

q q p

p

B N N B W N D

Q
I

I



 



 
 
 
 
   

' 0 '

' 0 '
z n n q z

z
z q n q z

A I C
T

B I D




 
   

We applied for this equation the method for theorem 3 LMI the SoS 
approach of theorem 3 to obtain :

Min  with respects to : 

   
1

, 1
r

T T
zz i i i i

i

v v v h h h v v 


      is SOS

With v  symbolic variables of the same order than zz , ih , 

1... 1i r   symbolic scalars, 
1

1

1
r

r i
i

h h




   a symbolic constant, and 

 ,i iv h  positive polynomials of order 2 with respects to v .
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Example: 

We used the following matrices :

1

5 5 0

30 1 20

0 20 2

A

 
   
   

, 2

5 5 0

30 1 30

0 30 2

A

 
   
  

, 1

5 0

0 30

2 0

B

 
   
  

,

2

0 0

30 0

0 2

B

 
   
  

, 1

1 0 0

5* 0 1 0

0 0 1

C

 
   
  

, 2

1 0 0

30* 0 1 0

0 0 1

C

 
   
  

1

0.5 0.5

0 0

0 0

D

 
   
  

, 2

3 0.1

0 0

0 0

D

  
   
  

, 1

1 0 0

5* 0 1 0

0 0 1

Bw

 
   
  

,

2

1 0 0

30* 0 1 0

0 0 1

Bw

 
    
  

, 1

1 0 0

5* 0 1 0

0 0 1

Bw

 
   
  

, 

0 0 0

1 2 0 0 0

0 0 0

Dw F F

 
     
  

We obtain exactly the same results. This shows that on this example 

the two problems provide the same results, but the SOS approach is 

simpler to write, since we formulate only one SOS constraint instead of 

many with an LMI formulation.

The upper bound   for problem  is 55. The exogenous input was 
chosen as 

       1 2 3

T
w t w t w t w t   

with
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     1 2

3 5 1 2
, exp 0.1* *

0 5 2 2

t t
w t w t t

t t

  
     

  ,   

     3 exp 0.1* *sinw t t t 

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 3. Evolutions of w. 
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Figure 4. Evolutions of y.
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6 Conclusion

Relaxation is an important problem with fuzzy approaches. With 
results based on Polya’s theorem, necessary and sufficient conditions 
can be obtained. However the LMIs conditions can become too 
numerous and big to be solved. 

In this paper we propose to use SOS approaches to directly try to 
solve the original condition including the ih  functions into one and big 

SOS condition.

We analyzed the H control problem for both SOS and LMI 
approach.

Results show that this is an interesting solution. Furthermore, this 
paper has studied a continuous model, but, of course, results can be 
obtained straightforwardly for discrete models, and any other control 
problems.
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Abstract. Stability, performance requirements in fuzzy control of Takagi–Sugeno systems are usually stated as multiple sums of terms involving degrees of freedom, such as the gains of the controllers, and matrices of the model, such as the state transition matrices. These summations of complex terms are weighted by non linear terms, called membership functions, which have to be removed to obtain standard conditions, such as Linear matrix inequalities (LMIs). Such a step is called a relaxation. Many researches have been performed on this topic, leading to only sufficient conditions. Recently two similar results have applied the Polya’s theorem to obtain sufficient and necessary conditions through a set of bigger and bigger LMIs. However problems become quickly intractable. This paper proposes to apply Sum of Squares (SOS) approaches, and show that the conditions are in fact more effective than those based on the Polya’s theorem.


1 Introduction


Since the work of Takagi and Sugeno ‎[16], fuzzy control and fuzzy observation of non linear model have known an increasing success. This is due partly to the ease of the modelling, and partly to the linear conclusion rules, which makes possible the use of the powerful tools of the linear control theory such as Linear Matrix Inequalities (LMIs), when the stability is related to a Lyapunov function.

Usually the almost final step is checking the positivity or negativity of a multiple sum of the type:
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Where 
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 is the number of rules, 
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 are nonlinear functions called membership functions which respect a convex sum property, 

[image: image4.wmf]z


 is a vector of usually measurable variables. Finally 
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 are terms that are more or less complex, depending on the problem (stability, or 
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 control, and so on…) and depending on many matrix terms such as gains of the controllers, matrices representing the model, slack variables…

The last step is the so called relaxation, and is the removal of 
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 terms from the equation (1)

 to obtain a finite number of LMIs that can be solved with standard software, such as Lmilab from Mathworks.

For a very long time it was sought that the relaxation step could only deliver sufficient conditions, because the information about the 
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 functions was lost, expect their convex sum property. So many papers tried to obtain less and less conservative sets of LMIs for a given sets of 
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. In this paper we do not tackle the definition of these terms and the possibility to obtain also less conservative conditions by introducing more degree of freedom in the 
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Recently two papers ‎[13], ‎[9] prove that the relaxation could propose finite sets of LMIs that were sufficient but also necessary. The proof was based on the Polya’s theorem, because it is a result concerning homogenous polynomials. Indeed 
(1)

 can be seen as a homogenous polynomial of the variables  GOTOBUTTON ZEqnNum248806  \* MERGEFORMAT . The two papers are similar, the second one ‎[9] proposing an improvement based on a modified 
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 with the Finsler lemma. Indeed it has been proved that the Finsler lemma can help reducing the conservativeness of the LMI problems associated to given 
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 ‎[2], ‎[3].

It is worth mentioning also a recent paper from ‎[6] that proposes sets of finite LMIs that are necessary and sufficient, by increasing progressively the number of rules.

These three approaches suffer from a problem of size: the LMIs problems become bigger and bigger when trying to obtain necessary conditions. At some point the LMIs problems are so big that they cannot be solve.


In this paper we propose another different approach to try to reduce the conservativeness of the relaxation step. Contrarily to the three previous approaches, we do not obtain necessary conditions. However we prove numerically that the associated problems, that are no longer written as a set of LMIs, can be solve much more efficiently and that outperform the LMIs based on the Polya’s theorem or the ones based on an increased number of rules.

The approach we propose in based on Sum-of-Squares decompositions (SOS). SOS and LMIs are both semidefinite problems. SOS problems were introduced and begun to spread ten years ago, with the works of ‎[10], ‎[12].

Basically SOS problems try to decompose a polynomial as a sum of squares to check its positivity. To see how SOS problems intervene in the relaxation step, simply recall that 
(1)

, as for the use of the Polya’s theorem, is a polynomial of the variables  GOTOBUTTON ZEqnNum248806  \* MERGEFORMAT . Instead of obtained a set of LMIs condition with approaches based on the Polya’s theorem, we will simply have one – but rather complex- SOS condition.


We will see on a numerical example that this approach is much more efficient that previous ones. This example concerns the stabilization of a continuous fuzzy model, but the approach can be applied also on discrete model, and on any classical control or observation problems, provided the 
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 are given.

2 Fuzzy models, relaxation and SOS problems


2.1 Fuzzy models


Consider a nonlinear model
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where 
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We will use in this paper the following notation : 
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A fuzzy model is obtained if it is possible - at least locally - to rewrite (2)

 as:
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The integer 
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denotes the number of rules; functions 
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2.2 Conditions of stabilization

In this paragraph we detail the 
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 that will be used in the numerical example.

With a quadratic Lyapunov function 
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(1)

, and with  GOTOBUTTON ZEqnNum248806  \* MERGEFORMAT  given by:
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First relaxation procedures lead to the next set of LMIs conditions ‎[17]:
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Various relaxations followed, in ‎[5], ‎[7], ‎[4]. They involved either no further decision variables, as in ‎[19], or new variables ‎[5], ‎[7], ‎[4] in the right side of the inequality (5)

.

We present now the best previous set of LMIs conditions, coming from the application of the Polya’s theorem in the relaxation step, and the use of the Finsler lemma in the 
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.

Theorem 1 ‎[9]. Model 
(3)

 is stabilizable by a control law  GOTOBUTTON ZEqnNum346773  \* MERGEFORMAT  if the following LMIs are checked:
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If these LMIs are checked, then the controller gains are defined by 
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Remark 1. Readers unfamiliar to the Polya’s results can see the set of LMIs becoming bigger and bigger first through the parameter 
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Authors of ‎[9] also says that non PDC control laws could be use, with 
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 being also multi sums, but no results are provided for this issue. This possibility is not studied in this paper too either, the motivation of this paper is to propose another way of relaxing conditions through Sum of Squares.

2.3 Sums of Squares

A scalar polynomial 
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 ‎[10]. It is obvious that a SOS polynomial is positive, but the converse is not true in general. However, experimental results show that there is only a small difference between a positive function and its approximation obtained as a sum of squares [12]. Moreover for polynomials of order 2 there is equivalence.

Thus, in the paper, conditions such as “
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Proposition 1. (Local study). 
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The proof is given in ‎[12] and is similar to the S-procedure, but with polynomials for the multipliers.


3 Relaxation based on SOS conditions


In fact it is very easy to apply a SOS approach for a relaxation step, and only a very small proof is required. We simply have to check with SOStools if a given polynomial is positive or not. The only problem is to take into account the constraint about its variables, here the 
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Recall that we want to check (5)
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Theorem 2 (SOS relaxation)

Equation 
(9)

 is verified with the  GOTOBUTTON ZEqnNum642226  \* MERGEFORMAT  functions respecting (10)

 if the next problem is verified:
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For the numerical comparison of section 4, we provide conditions with detailed 
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If these conditions are satisfied, controller gains are given by 
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Remark 3. As said in the previous section, for polynoms of order 2 there is an equivalence between 
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 is a polynom of order 2 with respect to the  GOTOBUTTON ZEqnNum642226  \* MERGEFORMAT , but the equivalence is lost, due to the constraints that are included in the SOS condition.


Remark 4. Of course theorem 3 concerns only a feasibility problem. Any optimization step can be added to it. For example in the numerical comparison we have added constraints about the controller gains, as in ‎[2], which is very easy. In this case, the constraints to add to (11)

 are:
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Where 
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 is a given constant, or a variable to minimize.


Remark 5. With a SOS formulation, it is very easy to include further relations about the 
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4 Numerical comparison


4.1 The model


This is a 3 rules fuzzy model, defined by the next matrices :
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4.2 The solvers


LMIs associated to theorem 1 are build with the Matlab code. They use YALMIP as the parser.


SOS conditions of theorem 3 are built with the SOS module of YALMIP.

In both cases the solver is SEDUMI. 


4.3 Comparisons.

We take ‎[9] for the comparison, since it slightly improves ‎[13] and is more robust numerically. For reference about the computation time, an athlon x2 4000+ is used with 2 Gigabytes of memory. Results are given in table 1.
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Table 1. Comparison with results obtained with ‎[9], for 
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As can be seen from table 1, results are similar for both approaches, and this shows that the SOS approach can provide accurate results quickly while being able to conveniently add information about the 
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For reference ‎[9], there are 33 decision variables and 147 LMIs rows. For the SOS approach without remark 4, there are 90 decision variables and 29 LMIs rows, and with the remark 4 enforced, there are 108 decision variables and 38 LMIs rows. Rising 

[image: image173.wmf]n


 with ‎[9], does not increase the number of decision variables, but the number of LMIs rows raises quickly.

Figure 1 shows a simulation of the model, for 

[image: image174.wmf]2


a


=


, when the premises are given by:




[image: image175.wmf](


)


2


11


1cos


wx


=-


, 

[image: image176.wmf](


)


2


22


1sin


wx


=-


, 

[image: image177.wmf]112


hww


=


, 

[image: image178.wmf](


)


212


1


hww


=-


, 

[image: image179.wmf]312


1


hhh


=--




[image: image180.emf]0 1 2 3 4 5 6 7 8 9 10


-0.4


-0.2


0


0.2


0.4


0.6


0.8


1




Figure. 1. 

[image: image181.wmf](


)


1


xt


 (in blue) and 

[image: image182.wmf](


)


2


xt


 (in green) for the example, when 

[image: image183.wmf]2


a


=


, 

[image: image184.wmf]6.75


b


=


. 

[image: image185.wmf](


)


[


]


18645


F


=--


, 

[image: image186.wmf][


]


2657399


F


=--


, 

[image: image187.wmf](


)


[


]


3113823


F


=


 (

[image: image188.wmf]3


10


m


=


for the remark 4).

On figure 2 we have plotted the highest eigenvalue of 
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Figure 2. Highest eigenvalue of 
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As said in the remark 2 we can try to improve results of theorem 3 by adding more degrees of freedom in the slack variables and the controllers gains. We have tested in particular the case of double indexes for 
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 Control


Let be the following TS model :
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Lemma 1. [20]

There exists a linearly parameter-dependent state feedback control gain 
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We applied for this equation the method for theorem 3 LMI the SoS approach of theorem 3 to obtain :
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Example: 


We used the following matrices :
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We obtain exactly the same results. This shows that on this example the two problems provide the same results, but the SOS approach is simpler to write, since we formulate only one SOS constraint instead of many with an LMI formulation.

The upper bound 
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Figure 3. Evolutions of w. 
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Figure 4. Evolutions of y.

6 Conclusion

Relaxation is an important problem with fuzzy approaches. With results based on Polya’s theorem, necessary and sufficient conditions can be obtained. However the LMIs conditions can become too numerous and big to be solved. 


In this paper we propose to use SOS approaches to directly try to solve the original condition including the 
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 functions into one and big SOS condition.


We analyzed the 
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control problem for both SOS and LMI approach.

Results show that this is an interesting solution. Furthermore, this paper has studied a continuous model, but, of course, results can be obtained straightforwardly for discrete models, and any other control problems.
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