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Abstract: This paper deals with the problem of robust stabilization for uncertain two-dimensional
systems described by the Roesser model. The uncertainty under consideration has linear frac-
tional form. Sufficient conditions for robust stability androbust stabilization are obtained.
Moreover, the results generalize the works on uncertain 2-Dsystems with norm-bounded
parametric uncertainties. A robust state feedback controllaw can be constructed based on
solving a strict linear matrix inequality (LMI). Numericalexamples are provided to demon-
strate the applicability of the proposed methodology.
Keywords: 2-D discrete-time systems, stability, Linear Matrix Inequality (LMI), robust sta-
bility, robust stabilization, linear fractional parametric uncertainties.

1 Introduction

In recent years, there has been a growing interest in the study of two-dimensional (2-D)
systems since these systems play important roles in describing systems in image data process-
ing, water stream heating, thermal processes, gas absorption, etc [10]. The stability problem
for 2-D systems has been studied in [1, 2], using 2-D Lyapunovequations. These results have
been extended to the stabilization problem for 2-D systems [3, 4, 13].

Since modeling uncertainties are often the main source of instability of control systems,
the problems of robust stability analysis and robust controller design for uncertain 2-D dis-
crete systems have also received much attention: For example, the robust stabilization prob-
lem for 2-D systems has been addressed in [4, 13, 14], using approaches based on solving sets
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of LMIs. A parallel approach has been applied for the specific case of repetitive processes [6].

This paper is concerned with the problem of robust stabilization for uncertain 2-D discrete-
time systems (An earlier version was presented in [8]. The class of 2-D discrete systems
under consideration here is described by the Roesser state space model under linear frac-
tional uncertainty form. The purpose is to design a full state feedback controller such that
the resulting closed-loop system is asymptotically stable for all admissible uncertainties. A
sufficient condition for the solvability of this problem is obtained and an LMI approach is de-
veloped, following the approach proposed for a different kind of systems by the authors [9].
Numerical examples are provided to demonstrate the application of the proposed method.

2 Problem formulation and Preliminaries

Consider the 2-D system(Σ) described by the following Roesser model:

(Σ) :

[
xh(i + 1, j)
xv(i, j + 1)

]
= Ã

[
xh(i, j)
xv(i, j)

]
+ B̃u(i, j), (1)

wherexh(i, j) ∈ R
n1 is the horizontal state vector,xv(i, j) ∈ R

n2 is the vertical state vector,
u(i, j) ∈ R

m is the control input, and the time-invariant matricesÃ and B̃ represent the
system dynamics, maybe affected by uncertainties.
The following Assumption is imposed on the uncertainties:

Assumption 2.1 The uncertainty in the system model (1) can be described using the follow-
ing Linear Fractional Parametric model:

[
Ã B̃

]
=

[
A B

]
+ H∆

[
N1 N2

]
(2)

∆(ξ) = [I − F (ξ)J ]
−1

F (ξ) (3)

I − JJT > 0, (4)

whereA,B,H,N1, N2 andJ are known constant matrices with appropriate dimensions. The
uncertain matrixF (ξ) ∈ R

l×j satisfies

F (ξ)FT (ξ) ≤ I, (5)

whereξ ∈ Ω, with Ω being a given compact set inR.

Definition 2.1 The class of parametric uncertainties∆ satisfying (2)-(5) is said to be admis-
sible.

Remark. The linear fractional form of parametric uncertainties has already been extensively
investigated in 1-D robust control setting [7, 12].
Remark. Condition (4) guarantees thatI − FJ is invertible for allF satisfying (5).
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Remark. The class of parametric uncertainties has been selected because it is very general,
and includes other classes of uncertainties studied in the literature. For example, it is easy to
see that the parametric uncertainties of linear fractionalform reduce to norm bounded para-
metric uncertainties whenJ = 0, so the results can be easily particularized for this kind of
uncertainties.

The unforced 2-D linear discrete-time system of (2)-(4) without uncertainty (i.e., nominal) is
given by

(ΣN ) :

[
xh(i + 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
. (6)

Throughout this paper, we shall adapt the following conceptof asymptotic stability.

Definition 2.2 [10]: The 2-D linear discrete-time system(ΣN ) is said to be asymptotically
stable if

lim
i,j→∞

‖ x(i, j) ‖= 0

under boundary conditions such thatsupj ‖ xh(0, j) ‖< ∞ and supj ‖ xv(i, 0) ‖< ∞

wherex(i, j) = [xh(i, j)T , xv(i, j)T ]T and‖ x(i, j) ‖ is the Euclidean norm.

Now, we can cite the following result for the stability of 2-Dsystems:

Lemma 2.1 [10] The 2-D linear discrete-time system(ΣN ) is asymptotically stable if there
exists a block-diagonal matrixP = diag(Ph, Pv) > 0 with Ph ∈ R

n1×n1 andPv ∈ R
n2×n2

such that
AT PA − P < 0. (7)

The following result is useful for the synthesis problem.

Lemma 2.2 The 2-D system(ΣN ) is asymptotically stable if there exist a block-diagonal
matrixQ = diag(Qh, Qv) > 0 with Qh ∈ R

n1×n1 andQv ∈ R
n2×n2 such that

[
−Q QAT

AQ −Q

]
< 0. (8)

Proof: By pre-multiplying (8) bydiag(Q−1, Q−1) and post-multiplying the result by
diag(Q−1, Q−1), one has [

−Q−1 AT Q−1

Q−1A −Q−1

]
< 0. (9)

LetQ−1 = P ; then, by the Schur complement equivalence, (9) leads to (7). Based on Lemma
2.1,(ΣN ) is asymptotically stable.

�

With the support of Lemmas 2.1 and 2.2, one can easily obtain the following result:

3
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Lemma 2.3 The 2-D system(ΣN ) is asymptotically stable if there exists a block-diagonal
matrixQ = diag(Qh, Qv) > 0 with Qh ∈ R

n1×n1 andQv ∈ R
n2×n2 , such that




− 1
2 (V + V T ) V T AT 1

2V + V T − Q

AV −Q −AV
1
2V + V T − Q −V T AT −V − V T


 < 0. (10)

In order to prove Lemma 2.3 the following result given in [5] will be used:

Lemma 2.4 [11]: Given a real symmetric matrixΨ and two real matricesM and R, the
following LMI problem is solvable in the decision variableX

Ψ + MT XT R + RT XM < 0,

if and only if
N T

MΨNM < 0, N T
R ΨNR < 0,

whereNM andNR are matrices whose columns form the bases of the right null space ofM
andR, respectively.

Proof of Lemma 2.3: Based on Lemma 2.2, it is only necessary to show that the feasibility of
(10) for decision variablesQ andV is equivalent to the feasibility of (8) for decision variable
Q. Rewriting (10) as




0 0 −Q

0 −Q 0
−Q 0 0


 +




1
2I

−A

−I


 V

[
−I 0 I

]
+




−I

0
I


V T

[
1
2I −AT −I

]
< 0. (11)

If M =
[

1
2I −AT −I

]
andR =

[
−I 0 I

]
, explicit null space bases calculations

yields

NM =




I 0
0 I
1
2I −AT


 , NR =




I 0
0 I

I 0


 . (12)

Then, we have

N T
MΨNM =

[
I 0 1

2I

0 I −A

]


0 0 −Q

0 −Q 0
−Q 0 0







I 0
0 I
1
2I −AT




=

[
− 1

2Q 0 −Q

AQ −Q 0

] 


I 0
0 I
1
2I −AT




=

[
−Q QAT

AQ −Q

]

4
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and

N T
R ΨNR =

[
I 0 I

0 I 0

]


0 0 −Q

0 −Q 0
−Q 0 0







I 0
0 I

I 0




=

[
−Q 0 −Q

0 −Q 0

] 


I 0
0 I

I 0




=

[
−2Q 0

0 −Q

]

which, by the projection Lemma 2.4, implies that inequality(10) is feasible in variableQ if
and only if [

−Q QAT

AQ −Q

]
< 0, (13)

and [
−2Q 0

0 −Q

]
< 0. (14)

Suppose that there exists a matrixQ such that (8) holds, that is inequality (13) holds, which
implies

−Q < 0. (15)

Inequality (15) implies that (14) holds. The desired resultis obtained by using Lemma 2.2.

�

Remark 2. With the introduction of a new matrixV , we obtain a linear matrix inequality
in which the Lyapunov matrixQ is not involved in any product with the dynamic matrixA.
This feature enables one to derive a new robust stability condition which is less conservative
due to the extra degrees of freedom (see the numerical example). It is noted that the matrix
V introduced is not even constrained to be symmetric.
Motivated by the foregoing results, we introduce the following definition for the unforced
system:

(Σa) :

[
xh(i + 1, j)
xv(i, j + 1)

]
= Ã

[
xh(i, j)
xv(i, j)

]
(16)

Definition 2.3 System(Σa) is said to be robustly stable if, for any admissible uncertainty
satisfying (2)-(5), any one of the following conditions is satisfied:
a) There exists a block-diagonal matrixP = diag(Ph, Pv) > 0 such that

[
−P PÃT

ÃP −P

]
< 0. (17)

b) There exist matricesP = diag(Ph, Pv) > 0 andV such that



− 1
2 (V + V T ) V T ÃT 1

2V + V T − P

ÃV −P −ÃV
1
2V T + V − P −V T ÃT −V − V T


 < 0. (18)

5
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Then, the objectives of this note are:
(i) to obtain conditions of the robust stability for(Σa).
(ii) to design a state feedback controller such that the closed-loop 2-D discrete-time system
is robustly stable.

3 Robust stability

In this section, we give sufficient conditions for(Σa) to be robustly stable. To this end, the
following lemma is needed.

Lemma 3.1 [12]: Suppose that∆ is given by (3)-(5). Given matricesM = MT , S andN

of appropriate dimensions, the inequality

M + S∆N + NT ∆T ST < 0

holds for allF such thatFFT ≤ I, if and only if, for someδ > 0



δM S δNT

ST −I JT

δN J −I


 < 0.

Theorem 3.1 System(Σa) is robustly stable if any one of the following results is satisfied:
a) There exists a block-diagonal matrixP = diag(Ph, Pv) > 0 such that




−P PAT 0 PNT
1

AP −P H 0
0 HT −I JT

N1P 0 J −I


 < 0. (19)

b) There exists a block-diagonal matrixP = diag(Ph, Pv) > 0 and a matrixV such that




− 1
2 (V + V T ) V T AT 1

2V + V T − P 0 V T NT
1

AV −P −AV H 0
1
2V T + V − P −V T AT −V − V T 0 −V T NT

1

0 HT 0 −I JT

N1V 0 −N1V J −I




< 0. (20)

Proof: a) Suppose that (19) holds. LettingP = δP̂ with δ > 0 leads to




−δP̂ δP̂AT 0 δP̂NT
1

−δAP̂ −δP̂ H 0
0 HT −I JT

δN1P̂ 0 J −I


 < 0,

which, using Lemma 3.1, implies that for any∆(ξ) satisfying (3)-(5) the following inequality
holds:

[
−P̂ P̂AT

AP̂ −P̂

]
+

[
0
H

]
∆

[
N1P̂ 0

]
+

[
P̂NT

1

0

]
∆T

[
0 HT

]
.

6
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Then, we have [
−P̂ P̂ ÃT

ÃP̂ −P̂

]
< 0.

Thus, the result follows by the parta) in Definition 2.1.
The proof ofb) is similar to the one of parta), so it is omitted.

�

In the case whenJ = 0, the parametric uncertainties of linear fractional form reduce to norm
bounded parametric uncertainties:

[
Ã B̃

]
=

[
A B

]
+ HF

[
N1 N2

]
(21)

with F (ξ)FT (ξ) ≤ I. Therefore, whenJ = 0 the results of Theorem 3.1 reduce to the
following:

Corollary 3.1 : The system(Σa) is robustly stable for norm bounded parametric uncertain-
ties if any one of the following results is satisfied:
a) There exists a block-diagonal matrixX = diag(Xh, Xv) > 0, and a scalarǫ > 0 such
that 


−X XAT XNT

1

AX −X + ǫHHT 0
N1X 0 −ǫI


 < 0. (22)

b) There exists a block-diagonal matrixX = diag(Xh, Xv) > 0, a matrixW andǫ > 0
such that




− 1
2 (V + V T ) V T AT 1

2V + V T − X V T NT
1

AV −X + ǫHHT −AV 0
1
2V T + V − X −V T AT −V − V T −V T NT

1

N1V 0 −N1V −ǫI


 < 0. (23)

Proof: a) WhenJ = 0, inequalities (19) becomes



−P PAT 0 PNT
1

AP −P H 0
0 HT −I 0

N1P 0 0 −I


 < 0,

which can be rearranged as



−P PAT PNT
1 0

AP −P 0 H

N1P 0 −I 0
0 HT 0 −I


 < 0.

It follows by the Schur complement equivalence that



−P PAT PNT
1

AP −P + HHT 0
N1P 0 −I


 < 0. (24)

7
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For some scalarǫ > 0, (24) can be written as



−(ǫP ) (ǫP )AT (ǫP )NT
1

A(ǫP ) −(ǫP ) + ǫHHT 0
N1(ǫP ) 0 −ǫI


 < 0. (25)

LettingX = ǫP leads to (21).
The proof ofb) is omitted because the procedure is similar to that of parta), so the proof is
complete.

�

4 Robust stabilization

In this section, we give an LMI solution to the problem of control for (Σ). A state feedback
controller

u(i, j) = K

[
xh(i, j)
xv(i, j)

]
(26)

is used. Substituting (26) into (Σ) leads to the closed-loop system

(Σc) :

[
xh(i + 1, j)
xv(i, j + 1)

]
= [Ã + B̃K]

[
xh(i, j)
xv(i, j)

]
. (27)

Recalling (2), one has that

Ã + B̃K = (A + BK) + H∆(N1 + N2K) . (28)

Theorem 4.1 : The closed-loop system (Σc) is robustly stable if any one of the following
results is satisfied:
a) There exists a block-diagonal matrixP = diag(Ph, Pv) > 0, and a matrixZ such that




−P PAT + ZT BT 0 PNT
1 + ZT NT

2

AP + BZ −P H 0
0 HT −I JT

N1P + N2Z 0 J −I


 < 0. (29)

In this case, a robust stabilizing state feedback control law takes the form

u(i, j) = ZP−1

[
xh(i, j)
xv(i, j)

]
. (30)

b) There exists a block-diagonal matrixP = diag(Ph, Pv) > 0, and matricesZ andV

such that



− 1
2 (V + V T ) V T AT 1

2V + V T − P 0 V T NT
1 + ZT NT

2

AV −P −AV H 0
1
2V T + V − P −V T AT −V − V T 0 −V T NT

1 − ZT NT
2

0 HT 0 −I JT

N1V + N2Z 0 −N1V − N2Z J −I




< 0. (31)

8
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In this case, a robustly stabilizing state feedback controllaw takes the form

u(i, j) = ZV −1

[
xh(i, j)
xv(i, j)

]
< 0. (32)

Proof: The proof is trivial and is omitted.

�

5 Numerical Examples

First Example:
Firstly, consider the 2-D linear system with parametric uncertainty(Σ), based on the example
in [13], defined by

A =




0.2 0.3 0.2 −0.1
1 1 0 0.5

0.8 0.2 −1.3 −0.1
0.2 0 1.3 0.1


, B =




0 1
1 0
1 1
0 0


 ,

H =




1
0.4
0.2
0.2


, N1 =

[
0.2 0.1 0.3 0.1

]
, N2 =

[
0.1 0.1

]
, J = 0.5.

The uncertain matrix∆(ξ) satisfies

∆(ξ) = F (ξ)
1−0.5F (ξ) , F (ξ) = sin ξ.

It is easy to show that matrix

A22 =

[
−1.3 −0.1
1.3 0.1

]

contains an eigenvalue outside the unit circle given by−1.2. Therefore, the nominal un-
forced system is not asymptotically stable. The purpose of this example is to design a full
state-feedback controller such that the closed-loop system is asymptotically stable for all ad-
missible uncertainties. Using the Matlab LMI control Toolbox to solve the LMI (26), the
following solutions can be obtained:

P =




23.0372 −6.2133 0 0
−6.2133 7.7667 0 0

0 0 3.6573 −8.2847
0 0 −8.2847 25.6795


 ,

Z =

[
−17.2127 −1.2540 4.0142 −12.6354
−2.2677 4.5835 −1.5621 6.9432

]
.

Thus, by Theorem 4.1a), a stabilizing state feedback is

9
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u(i, j) =

[
−1.0083 −0.9681 −0.0632 −0.5124
0.0774 0.6521 0.6885 0.4925

] [
xh(i, j)
xv(i, j)

]
.

The response ofxv
1(i, j) of the open-loop system is shown in Figure 1, which shows thatthe

open-loop system is unstable.
The responses of the closed-loop system ofxv

1(i, j) for F = 1 andxv
2(i, j) for F = −1

are shown in Figures 2 and 3, respectively. The other state responses are similar, and hence,
omitted. The simulation results show that the closed-loop system is asymptotically stable.
Second Example:

If we replaceH in the first example withH =




1.1
0.44
0.22
0.22


, the LMI (29) in Theorem 3.1 is

unfeasible. However, the LMI (31) is feasible. The solutions of (31) are:

P =




90.2823 −6.4914 0 0
−6.4914 19.5367 0 0

0 0 9.9509 −19.3054
0 0 −19.3054 66.1499


 ,

Z =

[
1.3620 −4.8679 −2.1483 3.5233
−4.0377 6.2192 −8.8911 27.1153

]
,

V =




45.2988 0.2042 1.7712 −0.3166
−6.1857 18.1446 −1.0808 −2.5138
−4.7135 −3.8116 8.3859 −7.6616
−0.9337 1.0033 −10.8358 36.3788


 ,

and the state feedback is:

u(i, j) =

[
−1.0204 −0.5261 −1.5617 −0.5181
−1.0175 −0.5293 −1.5627 −0.5188

] [
xh(i, j)
xv(i, j)

]
.

Thus, this second example shows that the introduction of theslack variablesV give less
conservative results, as there is a solution using Theorem 3.1 b) that is not feasible usinga).

6 Conclusion

This paper has investigated the robust stabilization problem for a class of 2-D discrete-time
systems, described by the Roesser model in state space. The uncertainty under consideration
is of linear fractional form. Sufficient conditions for robust stability and robust stabilization
are obtained via the LMI approach. Two numerical examples are given to demonstrate the
application of the proposed method.
It is important to notice that the proposed methodology can be applied to other kinds of 2-D
systems: systems with delays, repetitive systems, etc.
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Figure 1. Open-loop response ofxv

1(i, j).
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Figure 3. Closed-loop response ofxv

2(i, j) for F (ξ) = −1.
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