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Abstract: This paper deals with the problem of robust stabilizatmmuhcertain two-dimensional
systems described by the Roesser model. The uncertaingy codsideration has linear frac-
tional form. Sufficient conditions for robust stability anabust stabilization are obtained.
Moreover, the results generalize the works on uncertain Sems with norm-bounded
parametric uncertainties. A robust state feedback cotdawlcan be constructed based on
solving a strict linear matrix inequality (LMI). Numericakamples are provided to demon-
strate the applicability of the proposed methodology.

Keywords: 2-D discrete-time systems, stability, Linear Matrix Inafjity (LMI), robust sta-
bility, robust stabilization, linear fractional paramietuncertainties.

1 Introduction

In recent years, there has been a growing interest in thg stiudvo-dimensional (2-D)
systems since these systems play important roles in desgsistems in image data process-
ing, water stream heating, thermal processes, gas almarptt [10]. The stability problem
for 2-D systems has been studied in [1, 2], using 2-D Lyapwagmations. These results have
been extended to the stabilization problem for 2-D syste8n4,[13].

Since modeling uncertainties are often the main sourcestéliility of control systems,
the problems of robust stability analysis and robust cdletraesign for uncertain 2-D dis-
crete systems have also received much attention: For erathpl robust stabilization prob-
lem for 2-D systems has been addressed in [4, 13, 14], usprgaghes based on solving sets
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of LMIs. A parallel approach has been applied for the specific case of repetitive processes [6].

This paper is concerned with the problem of robust stabilization for uncertain 2-D discrete-
time systems (An earlier version was presented in [8]. The class of 2-D discrete systems
under consideration here is described by the Roesser state space model under linear frac-
tional uncertainty form. The purpose is to design a full state feedback controller such that
the resulting closed-loop system is asymptotically stable for all admissible uncertainties. A
sufficient condition for the solvability of this problem is obtained and an LMI approach is de-
veloped, following the approach proposed for a different kind of systems by the authors [9].
Numerical examples are provided to demonstrate the application of the proposed method.

2 Problem formulation and Preliminaries

Consider the 2-D systeft) described by the following Roesser model:

a(i+1,7) 7| 2", 9) I
(E) . |: xv(i,j + 1) - A xv(%]) + BU(Zvj)v (1)

wherex” (i, j) € R™ is the horizontal state vectat? (i, j) € R"2 is the vertical state vector,

u(i,j) € R™ is the control input, and the time-invariant matricésand B represent the

system dynamics, maybe affected by uncertainties.

The following Assumption is imposed on the uncertainties:

Assumption 2.1 The uncertainty in the system model (1) can be described using the follow-
ing Linear Fractional Parametric model:

[ 4 B]=[4 B]+HA[ N N ] @)
A(€) =T - F(©)J) 7 F(¢) 3
I—JJ' >0, 4)

whereA, B, H, N1, N, andJ are known constant matrices with appropriate dimensions. The
uncertain matrixf'(¢) € R satisfies

FFT(§) <1, ®)

where € 2, with 2 being a given compact set i

Definition 2.1 The class of parametric uncertaintiéssatisfying (2)-(5) is said to be admis-
sible.

Remark. The linear fractional form of parametric uncertainties has already been extensively
investigated in 1-D robust control setting [7, 12].
Remark. Condition (4) guarantees that- F'.J is invertible for all " satisfying (5).
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Remark. The class of parametric uncertainties has been selectedibe it is very general,
and includes other classes of uncertainties studied iritdrature. For example, it is easy to
see that the parametric uncertainties of linear fractiéorah reduce to norm bounded para-
metric uncertainties whest = 0, so the results can be easily particularized for this kind of
uncertainties.

The unforced 2-D linear discrete-time system of (2)-(4hwitt uncertainty (i.e., nominal) is
given by

"G+ ], ] ")
(EN)'{x”(z‘,jH) =4l wa) | ©)
Throughout this paper, we shall adapt the following concépisymptotic stability.

Definition 2.2 [10]: The 2-D linear discrete-time syste(X ) is said to be asymptotically
stable if

Jim (i) =0
under boundary conditions such thatp; || 2"(0,j) [|< oo andsup; || 2°(,0) ||< oo
wherez (i, 7) = [z"(i, 5)T, (i, )T]* and| z(i, j) | is the Euclidean norm.

Now, we can cite the following result for the stability of 2dystems:

Lemma 2.1 [10] The 2-D linear discrete-time systefi v ) is asymptotically stable if there
exists a block-diagonal matriR = diag(Py, P,) > 0 with P, € R"**" and P, € R"2*"2

such that
ATPA—-P <. (7

The following result is useful for the synthesis problem.

Lemma 2.2 The 2-D systenfXy) is asymptotically stable if there exist a block-diagonal
matrix Q = diag(Qn, Q,) > 0 with Q, € R"**"t and@Q, € R"2*"2 such that

_ AT
2 @)y o
Proof: By pre-multiplying (8) bydiag(Q~*, Q~!) and post-multiplying the result by
diag(Q~*,Q1), one has
_N-1 AT —1
{ Q%A _QQ,I ] < 0. 9)

LetQ~! = P; then, by the Schur complement equivalence, (9) leads tdB&9ed on Lemma
2.1,(Xy) is asymptotically stable.

With the support of Lemmas 2.1 and 2.2, one can easily ohtaifioflowing result:
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Lemma 2.3 The 2-D systeniX ) is asymptotically stable if there exists a block-diagonal
matrix Q = diag(Qn, Q) > 0 with @}, € R™"*" and@, € R"2*"2 such that

—L(V+vT) vTAT Ly 4vT—Q
AV -Q —AV <0. (10)
v+vl—@ —vTaT v -yT

In order to prove Lemma 2.3 the following result given in [5]llve used:

Lemma 2.4 [11]: Given a real symmetric matrixr and two real matrices\/ and R, the
following LMI problem is solvable in the decision variabte

U+ MTXTR+RTXM <0,

if and only if

NAJ;[\I/NM <0, Ng\I’NR <0,
whereN},; and i are matrices whose columns form the bases of the right nattespf)/
and R, respectively.

Proof of Lemma 2.3 Based on Lemma 2.2, it is only necessary to show that théifbgysof
(10) for decision variable® andV is equivalent to the feasibility of (8) for decision variabl
Q. Rewriting (10) as

0 0 -Q I
0 —-Q 0 |+|-A|V[-IT 0 I]+
—Q 0 0 I
—I
0 |V'[41 —-AT -I]<0 (11)
1
fM=[3I —AT —I JandR=[ —I 0 I ],explicitnull space bases calculations
yields
I 0 I 0
Nu=|0 T |, Ng=|0 T]. (12)
ir a7 I 0
Then, we have
1 0 0 -Q [T 0
NJE\DNMz{é ? 2f4] 0 -Q 0 0 I
-Q 0 0 Ir —AT |
A AL
AQ -Q 0 1p AT |
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and

0 0 —-Q71[TI 0]
/\/JQ\IJNR_H?H 0 —-Q 0 0 I
-Q 0 0 I 0 |
e el
0 —-Q 0 I o

[ -2 o

=1 0 o

which, by the projection Lemma 2.4, implies that inequa(it®) is feasible in variablé) if
and only if

_ T
[ oo 3

and
[ _gQ _OQ } <0. (14)

Suppose that there exists a matfhsuch that (8) holds, that is inequality (13) holds, which
implies

—-Q <0. (15)
Inequality (15) implies that (14) holds. The desired remuttbtained by using Lemma 2.2.
|

Remark 2. With the introduction of a new matri¥’, we obtain a linear matrix inequality
in which the Lyapunov matrix) is not involved in any product with the dynamic matrix
This feature enables one to derive a new robust stabilitgition which is less conservative
due to the extra degrees of freedom (see the numerical eganipis noted that the matrix
V introduced is not even constrained to be symmetric.

Motivated by the foregoing results, we introduce the follogvdefinition for the unforced

e a1 2 #d)
(za).[ﬂ(i’jﬂ)} A[va] (16)

Definition 2.3 System(X,,) is said to be robustly stable if, for any admissible uncertyi
satisfying (2)-(5), any one of the following conditionsasisfied:

a) There exists a block-diagonal mat#k= diag (P, P,) > 0 such that

-P PAT

popA . 17
i p | <Y (47)

b) There exist matrice® = diag(P, P,) > 0 andV such that

—1(V+VvT) VTAT ly4vyT-P
AV -P —AV <0. (18)
VItV —-P —VTAT -V -vT

1
2
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Then, the objectives of this note are:

() to obtain conditions of the robust stability fOE,,).

(ii) to design a state feedback controller such that theecldeop 2-D discrete-time system
is robustly stable.

3 Robust stability

In this section, we give sufficient conditions fGt,,) to be robustly stable. To this end, the
following lemma is needed.

Lemma 3.1 [12]: Suppose that\ is given by (3)-(5). Given matrice¥ = M7, S and N
of appropriate dimensions, the inequality

M + SAN + NTATST <0
holds for all F such thatF F*" < I, if and only if, for somé > 0

oM S O6NT
ST 1 JT | <o
ON J -1

Theorem 3.1 Systen(X,) is robustly stable if any one of the following results is sfid:
a) There exists a block-diagonal matd#X= diag( Py, P,) > 0 such that

—P PAT 0 PNT
AP -P H 0

o HT -1 JT
NP0 J T

<0. (19)

b) There exists a block-diagonal matik= diag(Py, P,) > 0 and a matrix’ such that

—LV+4VT) vTAT ly4vT_p o VINT
AV -pP —AV H 0
WTev—p —vTAT —v-vT o —VINT |<o. (20)
0 i 0 -1 JT
N,V 0 —N,V J -1

Proof: a) Suppose that (19) holds. Lettiigj= 6P with § > 0 leads to

—0P 6PAT 0 6PNT
—§AP —6P H 0
0 HY -1 JT
SN\P 0 J I
which, using Lemma 3.1, implies that for any(¢) satisfying (3)-(5) the following inequality
holds:

{_1:3 PAAT}JFL?I}A[NlP 0]+{P]8[1T}AT[0 HT .

<0,
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Then, we have

—P PAT
AP P
Thus, the result follows by the paaj in Definition 2.1.

The proof ofb) is similar to the one of pag), so it is omitted.

< 0.

In the case whed = 0, the parametric uncertainties of linear fractional formuee to norm
bounded parametric uncertainties:

(4 B]=[4 B]+HF[ N N, ] 1)

with F(§)FT(¢) < I. Therefore, when/ = 0 the results of Theorem 3.1 reduce to the
following:

Corollary 3.1 : The systeniX, ) is robustly stable for norm bounded parametric uncertain-
ties if any one of the following results is satisfied:

a) There exists a block-diagonal matdk = diag(Xy, X,) > 0, and a scalare > 0 such
that

s XAT XNT
AX —X+eHHT 0 |<o. (22)
N1 X 0 —el

b) There exists a block-diagonal mat& = diag( X, X,) > 0, a matrix W ande > 0
such that

—(V+VT) VTAT V+vr-Xx VINT
AV ~X +eHHT —AV 0 <0 (23)
VIT+v-X —vTAT -V -vT ~VINT ’
NV 0 NV —el
Proof: a) WhenJ = 0, inequalities (19) becomes
-P PAT 0 PN}
AP —-P H 0 <0
0 HTY -1 0 ’
NP0 0 —I
which can be rearranged as
-P PAT PNT 0
AP —P 0 H <0
NP 0 —I 0 ’
0 HT 0 -1
It follows by the Schur complement equivalence that
—-P PAT PN}
AP —P+ HHT 0 < 0. (24)

NP 0 —I
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For some scalar > 0, (24) can be written as

—(eP) (eP)AT (eP)NT
A(eP) —(eP)+eHHT 0 <0. (25)
Ni(eP) 0 —el

Letting X = eP leads to (21).
The proof ofb) is omitted because the procedure is similar to that of @argo the proof is
complete.

4 Robust stabilization

In this section, we give an LMI solution to the problem of aohfor (X). A state feedback
controller

P ()
is used. Substituting (26) intd) leads to the closed-loop system
e i+10) ] g B | 2"69)
() : [ g1 | = [A+ BK] R (27)
Recalling (2), one has that
A+ BK = (A+ BK) + HA (N + N,K). (28)

Theorem 4.1 : The closed-loop systent{) is robustly stable if any one of the following
results is satisfied:
a) There exists a block-diagonal mati#k= diag(Py, P,) > 0, and a matrixZ such that

—P PAT +7T"BT 0 PNI+Z'NY
AP+ BZ —P H 0
0 gr 7 JT < 0. (29)
NP+ NoZ 0 J —1I

In this case, a robust stabilizing state feedback contrad fakes the form

¥ (i, 4)
b) There exists a block-diagonal matidx = diag(Py, P,) > 0, and matricesZ andV
such that

—tv+vTh)y vTAT v+vT-P 0 VTN +ZTNT

ui,j) = 2P~ [ 2" (i, j) ] . (30)

AV -P —AV H 0
sVIi+v—p —viaT  —v-vT 0 -VIN[-ZTN{ | <0. (31)
0 HT 0 —1 JT

NV + N Z 0 -NiV-NZ J —I
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In this case, a robustly stabilizing state feedback coritnel takes the form
h . .
s\ —1 z (27.7)
u(i,j) =2V {a: i } <0. (32)

Proof: The proof is trivial and is omitted.

5 Numerical Examples

First Example:
Firstly, consider the 2-D linear system with parametricertainty(3), based on the example
in [13], defined by

02 03] 02 —0.1 0 1
1 1] 0 05 10
A=|T5 0213 —oa1 |'BT| T 1|
02 0| 13 01 0 0
1
=% Ni=[02 01 03 01],Na=[01 01],J=05
02 | 2 01 03 01], 1 017, 5.
0.2

The uncertain matriX\ (§) satisfies

A(§) = #ﬂl(g), F(¢) = siné.

It is easy to show that matrix

~-13 -0.1
AQ?‘[ 13 01 ]

contains an eigenvalue outside the unit circle given-iy2. Therefore, the nominal un-
forced system is not asymptotically stable. The purposéisféxample is to design a full
state-feedback controller such that the closed-loop syse@symptotically stable for all ad-
missible uncertainties. Using the Matlab LMI control Tomboto solve the LMI (26), the
following solutions can be obtained:

23.0372 —6.2133 0 0
p_ —6.2133  7.7667 0 0

0 0 3.6573  —8.2847 |’

0 0 —8.2847  25.6795
7 —17.2127 —1.2540 4.0142 —12.6354

—2.2677  4.5835 —1.5621 = 6.9432
Thus, by Theorem 4.4), a stabilizing state feedback is
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wij) — | SLO0S3 —0.9681 —0.0632 —05124 ah(i, §)
J)= 00774 06521 0.6885  0.4925 2v(i,5) |

The response of? (i, j) of the open-loop system is shown in Figure 1, which showsttieat
open-loop system is unstable.

The responses of the closed-loop systemxfi, j) for FF = 1 andz}(i, j) for FF = —1
are shown in Figures 2 and 3, respectively. The other staponses are similar, and hence,
omitted. The simulation results show that the closed-lombesn is asymptotically stable.
Second Example:

1.1
If we replaceH in the first example withtH = 83;1 , the LMI (29) in Theorem 3.1 is
0.22
unfeasible. However, the LMI (31) is feasible. The solusiorfi (31) are:
90.2823 —6.4914 0 0
p_ —6.4914 19.5367 0 0
0 0 9.9509  —19.3054 |’
0 0 —19.3054  66.1499
7 1.3620 —4.8679 —2.1483 3.5233
—4.0377 6.2192 —8.8911 27.1153 |’
45.2988  0.2042 1.7712 —0.3166
v — —6.1857 18.1446 —1.0808 —2.5138

—4.7135 —-3.8116 8.3859  —7.6616
—0.9337 1.0033 —10.8358 36.3788

and the state feedback is:

W) — | T10204 —05261 —L5617 05181 ah (i, §)
)T 210175 —0.5293  —1.5627 —0.5188 | | 2V(i,j) |

Thus, this second example shows that the introduction okkhek variables/ give less
conservative results, as there is a solution using Theor#im) 3hat is not feasible using).

6 Conclusion

This paper has investigated the robust stabilization proldfbr a class of 2-D discrete-time
systems, described by the Roesser model in state spacendééeainty under consideration
is of linear fractional form. Sufficient conditions for radfustability and robust stabilization
are obtained via the LMI approach. Two numerical examplesgaren to demonstrate the
application of the proposed method.

It is important to notice that the proposed methodology caapplied to other kinds of 2-D
systems: systems with delays, repetitive systems, etc.
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Figure 1. Open-loop responsexf(i, j).
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Figure 3. Closed-loop responsexf(i, j) for F'(§) = —1.



