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Résune. In this paper, a delay-dependent solution is given for state-feedackon-

trol of discrete time systems with norm-bounded uncertainties. Sufficeerttitions are
obtained for stabilization and for achieving design specifications whiclvased on
Lyapunov-Krasovskii functionals. Numerical examples demonsttegemerit of the
present condition in the aspect of conservativeness over othétsrigstie literature.
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1 Introduction

In this paper, aH,, control problem for discrete-time systems with time-dekygon-
sidered. It is well established in the literature that tidetay is usually the cause of per-
formance degradations for dynamical systems. It can eveinl@me circumstances, the
cause of instability of the system that we would like to cohtf such time-delay is not
taken into account during the design phase. Time delay mayraeither in continuous-
time [Fridman and Shaked, 2002,He et al., 2004] or disdigte-systems [Boukas, 2006],
[Fridman and Shaked, 2005], [Hmamed and Tissir, 1998/T&807]. It is worth noting that
most physical systems evolve in continuous-time and it tanahthat investigations in sta-
bility analysis and controller synthesis are mainly depelb for continuous-time systems.
However, it is more reasonable that one should use a distimegeapproach for that pur-
pose because the controller is usually implemented digitsde [Lee and Kwon, 2002] and
the references therein). In addition the size of the delay,especially for unknown delays,
makes the transformation into a standard discrete time hinzaddly realizable.

The delay-independent stabilization provides a contrellgich stabilizes a system irrespec-
tive of the size of the delay. On the other hand, the delayxéent stabilization is concerned
with the size of the delay and usually provides an upper bafrttie delay such that the
closed-loop system is stable for any delay less than therigmpand. Delay-independent and,
delay-dependent conditions féf., control expressed in terms of linear matrix inequalities
(LMIs) can be easily solved using dedicated solvers [Boyd et @94]L
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The goal of this paper consists of considering the class of discrete time linear systems with
delay and develop sufficient conditions fik, control design method that depend on the up-
per bounds of the delays for all admissible uncertainties. The Lyapunov-Krasovskii approach
will be used in this paper. Finally, some numerical examples are given to illustrate that the
results are less conservative than previous work.

Notation: The following notations will be used throughout the pap&denotes the set of
real numbersi™ denotes the: dimensional Euclidean space afif**" denotes the set
of all m x n real matrices. The notatioX > Y (respectivelyX > Y ), whereX and
Y are symmetric matrices, means that— Y is positive semi-definite (respectively posi-
tive definite). By L, we denote the space of sequeneék), £ = 0,1, ... with the norm
(k)3 = 72 (k) (k) < oc.

2 System description and preliminary

Consider the uncertain discrete-time system with delay described by the following equation:

z(k+1) = Ag(A)z(k) + A1(A)z(k — h) + Bo(A)u(k) + Brw(k)
z(k) = Cox(k) + Cru(k)
z(k) = ¢(k), ~h<k<0 &

Wherez (k) € R"is the state vectorp(k) € R is the disturbance input which is assumed
to be of bounded energy k) € R™ is the control inputz(k) € R? is the objective vector,

h is the discrete delaydy, A1, By, By andC;,i = 0,1 are known real constant matrices,
AAy, AA; and AB, are unknown real bounded matrix functions representing time-varying
parameter uncertainty. The admissible uncertainties are assumed to be of the form:

[AAo(k) AAy(k) ABy(k)] = DF(K)[Ee E Ei] @

Where Ey, F, E; and D are constant matrices of appropriate dimension B(#) is un-
known real time varying matrix satisfying

FT(E)F(k) < I (3)

Introduce the new terms: B
Ay = Ag + DF(]C)EQ, A=A+ DF(k)El and By = By + DF(k)EQ
Then, the motion of the system (1) can be described as follows:

z(k +1) = Ao (k) + Ayz(k — h) + Bou(k) + Biw(k),
z(k) = Cox(k) + Cru(k). 4
Itis assumed, in the analysis part, that

AO. The eigenvalues ofy + A; are all of absolute value less thdn
We address first the following two analysis problems.
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Problem 21 For (k) = 0 and for a given scalas find whether the system is asymptotically
stable and the following holds:

J = lz(k)[3 = ¥[lw(k)3 < 0, YO # {w(k)} € Lo
for (k) =0, —h <k <0 (5)

Problem 22 Find a control laww(k) that stabilizes the system (1) and (5) is satisfied for a
given scalary.

Once solutions are obtained to the above problems, thegarotd finding a state-feedback
control law which stabilizes the system and achieves (5 fmescribed will be considered.

3 Stability

In this section, we present delay-dependent conditioncdrabe used to check if the discrete
time system we are considering is stable for the case wh@ne= 0, k > 0.

Theorem 31 The discrete-time system (1) is robustly stable for a pibedrscalary > 0,

if there exist positive definite symmetric matridgs= P! € R**", Q = QT € R"*™ and

R = RT € {7 matricesP; € R"*",i = 2,...,6 and a positive scalar such that the
following LMl is verified:

AT * * * * *
F21 FQQ * * * *
| Is1 I3 I3z x ok
=\ -p P -P-LrR « & |~V ©)
BI'P, B'P, 0 0 -2 x
DTP,DTP; 0 0 0 —el

where
=P (Ag—D+(Ag—DT"Po+ P+ Pl +Q+ClCo+cEIE,
Iy =P +P{(Ay—I)+ P - P,
Iy =hR— P3— Pf
I3y =ATP, — Py + P + ¢ETE,
Iy =ATP, — Py
Iy3=—P;— Py —Q+eEE (7)

Proof :
To prove our Theorem, assume AO. and consider the followlragnge of variables:

y(k) = z(k +1) — z(k),

0= —y(k) + (Ag — Da(k) + Ayz(k — h) + Byw(k) (8)

! The symbol * stands for symmetric block in matrix inequalities
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and taking into account that

S

-1

z(k — h) - >y (9)
j=k—nh
We consider the following Lyapunov-Krasovskii candidatadtional:
V(k) = Va(k) + Va(k) + V3(k) (20)
with
k—1 -1
Vi(k) = 27 (k) Pra(k), Va(z(k) = Y 27 ()Qx(j) =y Z
j=k—h m=—h j=k+m
(11)

whereP; > 0,Q > 0 andR > 0. We apply the Lyapunov-Krasovskii method and require
that AV (k) is strictly negative to guarantee the asymptotic stabdftyhe system and that
AV (k) + 2T (k) z(k) — v?wT (k)w(k) is strictly negative in order to satisfy (5).
we now computedV; (z(k)):

AVi(k) = Vai(k + 1) — Vi(k)
Tk + )Pk + 1) — 27 (k) P (k) (12)

I
8

P00
LetP=| P, P; 0 |,using(8)and (9), we can write the term of (12) as follows:
P, Ps Py

y(k)
0
0

AVi(k) = yT (k) Pry(k) + 227 (k) PT ( ) =y" (k) Pry(k)

y(k)
+277 (k) PT (—y(k) + (Ag — Da(k) + Ayz(k — h) + Biw(k) ) (13)
(k) =k —h) = X520 ()
wherez(k) = (27 (k) yT (k) 2T (k —h))"
For V5 (k), by standard manipulation, we have
AVa(k) = Va(a(k + 1)) — Va(x(k))

k k—1
= > 2T()Qx(G) - Y. «"()Qx())
j=k+1—h j=k—h
= 2T (k)Qz(k) — T (k — h)Qxz(k — h) (14)
For V3 (k), one has
—1 k—1
AV(k Z Z = > > yHRYG)
m=—h j=k+1+m m=—h j=k+m
k—1
=hy" ()Ry(k) = >y () Ry(j) (15)
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By Cauchy-Schwartz inequality

E

-1
hSS W G)RG) > (

Jj=k—h J

E

-1

:Ekj yT(j))R( ;1 y(j)) (16)

—h j=k—nh

ko

Il
e

Hence

AVs(k) = hy" (k)Ry(k) —

S| =

k—1 k—1
y'(j) |R y(J) 17)
(3o 3, )
It follows from (13), (14) and (17) that

0 k—1
AV (k) < T (k)ZZ(k) +y" (k) Pry(k) + 227 (k) PT ( 0 ) y(Jj)
—1 /) j=k—h

0
+2z7 (k) PT ( Bl) w(k) + 27 (k)Qz(k)
0
1 k—1 k—1
(= Qe = 1)+ i R — 3 (5 T 0)r( Y u)  as)
j=k—h j=k—h
0 I 0 0(Ag—DT I
where= = PT (201121) + (I -1 0 ) P
I 0 -1 0 AT -]

Now, we consider the asymptotical stability witi{k) = 0, then (18)becomes
V(x(k)) < QT (k, 5)T2(k, j) (19)

where
Tu Y5 1§ P
Yél 132 ]gg —]%?

20
Y31 V3o Yi3 —PF (20)
—Py—P; —Ps —+R

T11=P2T(Zo—1)+(EO—I)TP2+P4+PE+Q
Tor =P+ P](Ay— 1)+ PT - P,

Yoo =hR— P3 — Pf

Ty =ATPy,— P+ Pl

Y32 = A] P — P

Ts3=-Ps—Pi —Q

and
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T
k,5) = (7 () T2t y" () )
Itis clear thafl” is negative definite sincE is negative definite. The performance requirement
~ T
of (5), defining2(k, j) = (a;’f(k) S LT () wT(kz))) we require that

AV (k) + 27 (k) 2(k) — v2wT (B)w(k) < Q7 (k)OQ(k) + DF(K)E + B FT(k)D' <0
(21)
whereD = (DTP, DTP;000)", E=(E,0E,00)7,
6, ©o% el —PrPI'p
Oy Oy O3, —P] P B
O=| 05 O3 O35 —PT 0 (22)
~P, —P; —Ps—LR 0
B;PQ B?Pg 0 0 —’YQI
and

O =Pl (Ag—1)+ Ay — TP+ P+ P{ +Q+CICy

Oy =P+ Pl (Ag— 1)+ P! - P,

Oy = hR — Py — PT

O3 = ATP, — Py + P¢

O30 = AT P; — Ps

O33=-Ps— P{ —Q
Bounding the norm-bounded uncertainties as [Xie, 1996]:

DF(KE+E FI (kD' <cE E+:'DD" (23)

wheree is a positive number.

Since summation in the inequality (21) fram= 0 till ¥ = oo implies (5) and we obtain by
Schur complements that LMI (6) holds.

Remark 31 In deriving Theorem 31 we have taken the mafri¥hat contains free matrices
P, P3, Py, Ps and Ps. In contrast to the descriptor method used in [Fridman andkghl, 2005]
where the matrix? has the formp — ( £t 0

P, Py
posses more degrees of freedom. In a similar way, [He et@D4Rhas added in the deriva-
tive of the Lyapunov-Krasovskii functional some null tepustaining free matrices. It has
been shown, that in some cases the introduction of free ceatteads to less restrictive re-
sults.

. Thus our result is more general since it

4 Stabilizability

The aim of this section is to solve problem 22 that is to desigrtate feedback controller
which stabilizes the system and achieves a prescribed bmuttte H,.-norm of the closed-
loop with uncertainties. Using the system dynamics (4) aedcbntroller expression:

u(k) = Kx(k), (24)
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we get the following system:
w(k +1) = Age(k) + Arz(k — h) + Byw(k) (25)
z(k) = Cocz(k)

If we let Ay, = Ay + BoK, Co. = Co + C1K, based on the results on stability, Replacing
Ay andCy in Theorem 31 with4y. andCy., respectively, we obtain the following results in
term of inequalities.

Theorem 41 For some given scalarg > 0, system (4) is robustly stabilizable via feedback
control law (24) and satisfies (5) for all non-zeras € L,[0,0), if there exist positive
definite symmetric matriceB, = Pl € 27" Q = QT € R"*" andR = RT € Rn*",
matricesP; € R"*" i = 2,...,6, K € R™*" and a positive scalat such that the following
condition is verified:

I mf, 1% —PF PEBy PIDe(Ey+ EK)" (Co+ 1K)
Iy, My L, —PT PI'B, P'D 0 0
H31 Hgg H33 —PGT 0 0 0 0
1
7= —TP4 —TP5 —P; —+R 02 0 0 0 <0
B, B{P; 0 0 —*I 0 0 0
pr'p, DT'Py 0 0 0 —el 0 0
e(Ep+E:K) 0 0 0 0 0 —el 0
Co+CiK 0 0 0 0 0 0 ~I
(26)
where
Iy = P¥ (Ao + BoK —I) + (Ao + BoK — I) Py + Py + PL +Q
IIyy = Py + P{ (Ag+ BoK — 1) + P — P,
My = hR — Py — P}
Hgl = A?Pg —P4 +P6T +€E?(E0 +E2K)
IIs, = ATPy — Py
33 =—Ps— P —Q+¢<¢ETE,
(27)

Remark 41 In Theorem 41 there are some nonlinearities due to the piodetween the
variables P, P53, ¢ and K. This can be overcomed by using some relaxation techniques
[Boyd et al., 1994, Tarbouriech and Garcia, 1999] or by iteng with respect td<. Inequal-
itie (26) then reduce to linear matrix inequalitie LMI in dlie remaining decision variables.
Thus latter decision variables are solved using the tednesopf [Gahinet et al., 1995]. This
procedure can be derived as follows:

Algorithm:

Step 1: FixK, v sufficiently large and: sufficiently small to have a feasible solution, solve
the LMI (26) forP;,i = 1,...,6, @, R ande.

Step 2: FixP,, P; ande obtained in the previous step, and tet= v — 1 with p sufficiently
small positive scalar, solve the LMI (26) fé4, Py, Ps, Ps, @, R and K.
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Step 3: Ify less than a prescribed performance indexGo to stept else go to step.
Step 4: Leth = h + hgtep, SOIVe the LMI (26).
Step 5: If the LMI have a solution go to stélseh = h — hytep, StOp.

5 Numerical examples

In this section, numerical computations is performed tesillate the advantages of the results
compared with existing ones.

Example 51 Consider the uncertain discrete time delay system destiiye(4) with the

following matrices:
1 0 —0.02 —0.005
AO(01.01>’ Al( 0 —0.01)’

Bo= (o) 5= (1) @=010),

C,=0.1, D=02I, Ey=E; =0.011, Es=0. (28)

In [Lee and Kwon, 2002], considering the stabilization dext only with norm-bounded un-
certainties, a maximum value &f = 41 was obtained for the case of constant delay. In
[Fridman and Shaked, 2005], foy = 180.07 the system with the above norm-bounded un-
certainties is stabilizable for all constant< 67.

Applying theorem 41, foK = (—111.9899 —81.9951) We can show that the system (4)
is stabilizable for all constant < 71 and the minimum bound = 164.141. Clearly, our
method produces much less conservative results, thus dénaiimg its validity.

Example 52 Let us consider a system described by (4) and suppose thsystesm data are

as follows:
0 1 0.01 0.1
Ao = <—2—3>’ Al_( 0 0.1)’

BO:(?),BlzCozclzo,hzlo. (29)

Applying theorem 41, foK = (2.0005 2.9051 ) we obtain by using the software Matlab:

p_ ( 6:6058 —0.1463
1=\ —0.1463 17.9371 /°

0= 1.9343 —-0.1174
—\—0.1174 2.9663 )’

R 0.2873 0.2867
~10.2867 0.7328 )’

p, _ (19683 —0.8618
271 1.8801 1.8911 )’
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p. _ (58425 —1.7195
37\ 5.3242 14.0693 )

p. _ (—0-0107 ~0.0030
47\ -0.0101 —0.0172 ) °

p. _ (0-0085 0.0165
57 10.0217 0.0428 /°

p. _ (0-0076 —0.0049
6= 10.0124 0.0075 /-

(30)

By numerical simulation, we show in figure 1 and figure 2 the trajectories and the feedback
controller of the discrete-time system with time delay (29). These figures show that the closed-

loop system is stable under the feedback controller.

State responses

States,x1,x2

Time

Fig. 1. The behaviors of the states andz.

6 Conclusions

60

Sufficient conditions have been derived to guarantee robust stability and robust stabiliza-
tion dependent of delay for uncertain linear discrete systems wittiHthecontroller. The
uncertainties considered are time-varying and norm-bounded, we have proposed an iterative
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Control effort
T

-2+ 1

Time

Fig. 2. The behaviors of the control law.

procedure based on numerical optimization. The algorithm is simply implemented on Matlab
software. Two numerical examples and simulations are given to demonstrate the validity of
our main results.
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