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1 Introduction

In this paper, aH∞ control problem for discrete-time systems with time-delayis con-
sidered. It is well established in the literature that time-delay is usually the cause of per-
formance degradations for dynamical systems. It can even be, in some circumstances, the
cause of instability of the system that we would like to control if such time-delay is not
taken into account during the design phase. Time delay may occur either in continuous-
time [Fridman and Shaked, 2002,He et al., 2004] or discrete-time systems [Boukas, 2006],
[Fridman and Shaked, 2005], [Hmamed and Tissir, 1998,Tissir, 2007]. It is worth noting that
most physical systems evolve in continuous-time and it is natural that investigations in sta-
bility analysis and controller synthesis are mainly developed for continuous-time systems.
However, it is more reasonable that one should use a discrete-time approach for that pur-
pose because the controller is usually implemented digitally (see [Lee and Kwon, 2002] and
the references therein). In addition the size of the delay, and especially for unknown delays,
makes the transformation into a standard discrete time model hardly realizable.
The delay-independent stabilization provides a controller which stabilizes a system irrespec-
tive of the size of the delay. On the other hand, the delay-dependent stabilization is concerned
with the size of the delay and usually provides an upper boundof the delay such that the
closed-loop system is stable for any delay less than the upper bound. Delay-independent and,
delay-dependent conditions forH∞ control expressed in terms of linear matrix inequalities
(LMIs) can be easily solved using dedicated solvers [Boyd et al., 1994].
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The goal of this paper consists of considering the class of discrete time linear systems with
delay and develop sufficient conditions forH∞ control design method that depend on the up-
per bounds of the delays for all admissible uncertainties. The Lyapunov-Krasovskii approach
will be used in this paper. Finally, some numerical examples are given to illustrate that the
results are less conservative than previous work.

Notation: The following notations will be used throughout the paper.ℜ denotes the set of
real numbers,ℜn denotes then dimensional Euclidean space andℜm×n denotes the set
of all m × n real matrices. The notationX ≥ Y (respectivelyX > Y ), whereX and
Y are symmetric matrices, means thatX − Y is positive semi-definite (respectively posi-
tive definite). ByL2 we denote the space of sequencesx(k), k = 0, 1, ... with the norm
‖x(k)‖2

2 =
∑

∞

k=0
x(k)T x(k) < ∞.

2 System description and preliminary

Consider the uncertain discrete-time system with delay described by the following equation:

x(k + 1) = A0(∆)x(k) + A1(∆)x(k − h) + B0(∆)u(k) + B1w(k)

z(k) = C0x(k) + C1u(k)

x(k) = φ(k), −h ≤ k ≤ 0 (1)

with: A0(∆) =
(
A0+∆A0(k)

)
, A1(∆) =

(
A1+∆A1(k)

)
and B0(∆) =

(
B0+∆B0(k)

)

Wherex(k) ∈ ℜnis the state vector,w(k) ∈ ℜl is the disturbance input which is assumed
to be of bounded energy,u(k) ∈ ℜm is the control input,z(k) ∈ ℜd is the objective vector,
h is the discrete delay.A0, A1, B0, B1 andCi, i = 0, 1 are known real constant matrices,
∆A0,∆A1 and∆B0 are unknown real bounded matrix functions representing time-varying
parameter uncertainty. The admissible uncertainties are assumed to be of the form:

[
∆A0(k) ∆A1(k) ∆B0(k)

]
= DF (k)

[
E0 E1 E2

]
(2)

WhereE0, E1, E2 andD are constant matrices of appropriate dimension andF (k) is un-
known real time varying matrix satisfying

FT (k)F (k) ≤ I (3)

Introduce the new terms:
Ã0 = A0 + DF (k)E0, Ã1 = A1 + DF (k)E1 and B̃0 = B0 + DF (k)E2.
Then, the motion of the system (1) can be described as follows:

x(k + 1) = Ã0x(k) + Ã1x(k − h) + B̃0u(k) + B1w(k),

z(k) = C0x(k) + C1u(k). (4)

It is assumed, in the analysis part, that
A0. The eigenvalues ofA0 + A1 are all of absolute value less than1.
We address first the following two analysis problems.
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Problem 21 For u(k) = 0 and for a given scalarγ find whether the system is asymptotically
stable and the following holds:

J = ‖z(k)‖2
2 − γ2‖w(k)‖2

2 < 0, ∀0 6= {w(k)} ∈ L2

for φ(k) = 0, −h ≤ k ≤ 0 (5)

Problem 22 Find a control lawu(k) that stabilizes the system (1) and (5) is satisfied for a
given scalarγ.

Once solutions are obtained to the above problems, the problem of finding a state-feedback
control law which stabilizes the system and achieves (5) fora prescribedγ will be considered.

3 Stability

In this section, we present delay-dependent condition thatcan be used to check if the discrete
time system we are considering is stable for the case whereu(k) = 0, k ≥ 0.

Theorem 31 The discrete-time system (1) is robustly stable for a prescribed scalarγ > 0,
if there exist positive definite symmetric matricesP1 = PT

1 ∈ ℜn×n, Q = QT ∈ ℜn×n and
R = RT ∈ ℜn×n, matricesPi ∈ ℜn×n, i = 2, ..., 6 and a positive scalarε such that the
following LMI is verified1:

Γ =




Γ11 ∗ ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗ ∗
Γ31 Γ32 Γ33 ∗ ∗ ∗
−P4 −P5 −P6 − 1

h
R ∗ ∗

BT
1 P2 BT

1 P3 0 0 −γ2I ∗
DT P2 DT P3 0 0 0 −εI




< 0 (6)

where

Γ11 = PT
2 (A0 − I) + (A0 − I)T P2 + P4 + PT

4 + Q + CT
0 C0 + εET

0 E0

Γ21 = P1 + PT
3 (A0 − I) + PT

5 − P2

Γ22 = hR − P3 − PT
3

Γ31 = AT
1 P2 − P4 + PT

6 + εET
1 E0

Γ32 = AT
1 P3 − P5

Γ33 = −P6 − PT
6 − Q + εET

1 E1 (7)

Proof :
To prove our Theorem, assume A0. and consider the following change of variables:

y(k) = x(k + 1) − x(k),

0 = −y(k) + (Ã0 − I)x(k) + Ã1x(k − h) + B1w(k) (8)

1 The symbol * stands for symmetric block in matrix inequalities
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and taking into account that

x(k − h) = x(k) −

k−1∑

j=k−h

y(j) (9)

We consider the following Lyapunov-Krasovskii candidate functional:

V (k) = V1(k) + V2(k) + V3(k) (10)

with

V1(k) = xT (k)P1x(k), V2(x(k)) =

k−1∑

j=k−h

xT (j)Qx(j), V3(k) =

−1∑

m=−h

k−1∑

j=k+m

yT (j)Ry(j).

(11)
whereP1 > 0, Q > 0 andR > 0. We apply the Lyapunov-Krasovskii method and require
that∆V (k) is strictly negative to guarantee the asymptotic stabilityof the system and that
∆V (k) + zT (k)z(k) − γ2wT (k)w(k) is strictly negative in order to satisfy (5).
we now compute∆V1(x(k)):

∆V1(k) = V1(k + 1) − V1(k)

= xT (k + 1)P1x(k + 1) − xT (k)P1x(k) (12)

Let P =




P1 0 0
P2 P3 0
P4 P5 P6


, using (8) and (9), we can write the term of (12) as follows:

∆V1(k) = yT (k)P1y(k) + 2x̃T (k)PT




y(k)
0
0


 = yT (k)P1y(k)

+2x̃T (k)PT




y(k)

−y(k) + (Ã0 − I)x(k) + Ã1x(k − h) + B1w(k)

x(k) − x(k − h) −
∑k−1

j=k−h y(j)


 (13)

wherex̃(k) =
(
xT (k) yT (k) xT (k − h)

)T

ForV2(k), by standard manipulation, we have

∆V2(k) = V2(x(k + 1)) − V2(x(k))

=
k∑

j=k+1−h

xT (j)Qx(j) −
k−1∑

j=k−h

xT (j)Qx(j)

= xT (k)Qx(k) − xT (k − h)Qx(k − h) (14)

ForV3(k), one has

∆V3(k) =

−1∑

m=−h

k∑

j=k+1+m

yT (j)Ry(j) −

−1∑

m=−h

k−1∑

j=k+m

yT (j)Ry(j)

= hyT (k)Ry(k) −

k−1∑

j=k−h

yT (j)Ry(j) (15)
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By Cauchy-Schwartz inequality

h

k−1∑

j=k−h

yT (j)Ry(j) ≥

( k−1∑

j=k−h

yT (j)

)
R

( k−1∑

j=k−h

y(j)

)
(16)

Hence

∆V3(k) = hyT (k)Ry(k) −
1

h

( k−1∑

j=k−h

yT (j)

)
R

( k−1∑

j=k−h

y(j)

)
(17)

It follows from (13), (14) and (17) that

∆V (k) ≤ x̃T (k)Ξx̃(k) + yT (k)P1y(k) + 2x̃T (k)PT




0
0
−I




k−1∑

j=k−h

y(j)

+2x̃T (k)PT




0
B1

0


 w(k) + xT (k)Qx(k)

−xT (k − h)Qx(k − h) + hyT (k)Ry(k) −
1

h

( k−1∑

j=k−h

yT (j)

)
R

( k−1∑

j=k−h

y(j)

)
(18)

whereΞ = PT




0 I 0

Ã0 − I −I Ã1

I 0 −I


 +




0 (Ã0 − I)T I

I −I 0

0 ÃT
1 −I


 P

Now, we consider the asymptotical stability withw(k) = 0, then (18)becomes

V (x(k)) ≤ ΩT (k, j)ΥΩ(k, j) (19)

where

Υ =




Υ11 ΥT
21 ΥT

31 −PT
4

Υ21 Υ22 ΥT
32 −PT

5

Υ31 Υ32 Υ33 −PT
6

−P4 −P5 −P6 − 1

h
R


 (20)

Υ11 = PT
2

(
Ã0 − I

)
+

(
Ã0 − I

)T
P2 + P4 + PT

4 + Q

Υ21 = P1 + PT
3

(
Ã0 − I

)
+ PT

5 − P2

Υ22 = hR − P3 − PT
3

Υ31 = ÃT
1 P2 − P4 + PT

6

Υ32 = ÃT
1 P3 − P5

Υ33 = −P6 − PT
6 − Q

and
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Ω(k, j) =
(

x̃T (k)
∑k−1

j=k−h yT (j))
)T

It is clear thatΥ is negative definite sinceΓ is negative definite. The performance requirement

of (5), definingΩ̃(k, j) =
(

x̃T (k)
∑k−1

j=k−h yT (j) wT (k))
)T

we require that

∆V (k) + zT (k)z(k) − γ2wT (k)w(k) ≤ Ω̃T (k)ΘΩ̃(k) + DF (k)E + E
T
FT (k)D

T
< 0
(21)

whereD =
(
DT P2 DT P3 0 0 0

)T
, E =

(
E0 0 E1 0 0

)T
,

Θ =




Θ11 ΘT
21 ΘT

31 −PT
4 PT

2 B1

Θ21 Θ22 ΘT
32 −PT

5 PT
3 B1

Θ31 Θ32 Θ33 −PT
6 0

−P4 −P5 −P6 − 1

h
R 0

BT
1 P2 BT

1 P3 0 0 −γ2I




(22)

and

Θ11 = PT
2 (A0 − I) + (A0 − I)T P2 + P4 + PT

4 + Q + CT
0 C0

Θ21 = P1 + PT
3 (A0 − I) + PT

5 − P2

Θ22 = hR − P3 − PT
3

Θ31 = AT
1 P2 − P4 + PT

6

Θ32 = AT
1 P3 − P5

Θ33 = −P6 − PT
6 − Q

Bounding the norm-bounded uncertainties as [Xie, 1996]:

DF (k)E + E
T
FT (k)D

T
≤ εE

T
E + ε−1DD

T
(23)

whereε is a positive number.
Since summation in the inequality (21) fromk = 0 till k = ∞ implies (5) and we obtain by
Schur complements that LMI (6) holds.

Remark 31 In deriving Theorem 31 we have taken the matrixP that contains free matrices
P2, P3, P4, P5 andP6. In contrast to the descriptor method used in [Fridman and Shaked, 2005]

where the matrixP has the formP =

(
P1 0
P2 P3

)
. Thus our result is more general since it

posses more degrees of freedom. In a similar way, [He et al., 2004] has added in the deriva-
tive of the Lyapunov-Krasovskii functional some null termscontaining free matrices. It has
been shown, that in some cases the introduction of free matrices leads to less restrictive re-
sults.

4 Stabilizability

The aim of this section is to solve problem 22 that is to designa state feedback controller
which stabilizes the system and achieves a prescribed boundon theH∞-norm of the closed-
loop with uncertainties. Using the system dynamics (4) and the controller expression:

u(k) = Kx(k), (24)
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we get the following system:
{

x(k + 1) = Ã0cx(k) + Ã1x(k − h) + B1w(k)
z(k) = C0cx(k)

(25)

If we let Ã0c = Ã0 + B̃0K, C0c = C0 + C1K, based on the results on stability, Replacing
A0 andC0 in Theorem 31 withA0c andC0c, respectively, we obtain the following results in
term of inequalities.

Theorem 41 For some given scalarsγ > 0, system (4) is robustly stabilizable via feedback
control law (24) and satisfies (5) for all non-zerosw ∈ L2[0,∞), if there exist positive
definite symmetric matricesP1 = PT

1 ∈ ℜ2n×n, Q = QT ∈ ℜn×n andR = RT ∈ ℜn×n,
matricesPi ∈ ℜn×n, i = 2, ..., 6, K ∈ ℜm×n and a positive scalarε such that the following
condition is verified:

Π =




Π11 ΠT
21 ΠT

31 −PT
4 PT

2 B1 PT
2 D ε

(
E0 + E2K

)T (
C0 + C1K

)T

Π21 Π22 ΠT
32 −PT

5 PT
3 B1 PT

3 D 0 0
Π31 Π32 Π33 −PT

6 0 0 0 0
−P4 −P5 −P6 − 1

h
R 0 0 0 0

BT
1 P2 BT

1 P3 0 0 −γ2I 0 0 0
DT P2 DT P3 0 0 0 −εI 0 0

ε
(
E0 + E2K

)
0 0 0 0 0 −εI 0

C0 + C1K 0 0 0 0 0 0 −I




< 0

(26)
where

Π11 = PT
2

(
A0 + B0K − I

)
+

(
A0 + B0K − I

)T
P2 + P4 + PT

4 + Q

Π21 = P1 + PT
3

(
A0 + B0K − I

)
+ PT

5 − P2

Π22 = hR − P3 − PT
3

Π31 = AT
1 P2 − P4 + PT

6 + εET
1

(
E0 + E2K

)

Π32 = AT
1 P3 − P5

Π33 = −P6 − PT
6 − Q + εET

1 E1

(27)

Remark 41 In Theorem 41 there are some nonlinearities due to the product between the
variablesP2, P3, ε and K. This can be overcomed by using some relaxation techniques
[Boyd et al., 1994,Tarbouriech and Garcia, 1999] or by iterating with respect toK. Inequal-
itie (26) then reduce to linear matrix inequalitie LMI in allthe remaining decision variables.
Thus latter decision variables are solved using the techniques of [Gahinet et al., 1995]. This
procedure can be derived as follows:
Algorithm:
Step 1: FixK, γ sufficiently large andh sufficiently small to have a feasible solution, solve
the LMI (26) forPi, i = 1, . . . , 6, Q, R andε.
Step 2: FixP2, P3 andε obtained in the previous step, and letγ = γ − µ with µ sufficiently
small positive scalar, solve the LMI (26) forP1, P4, P5, P6, Q, R andK.
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Step 3: Ifγ less than a prescribed performance indexγ. Go to step4 else go to step2.
Step 4: Leth = h + hstep, solve the LMI (26).
Step 5: If the LMI have a solution go to step4 elseh = h − hstep, stop.

5 Numerical examples

In this section, numerical computations is performed to illustrate the advantages of the results
compared with existing ones.

Example 51 Consider the uncertain discrete time delay system described by (4) with the
following matrices:

A0 =

(
1 0
0 1.01

)
, A1 =

(
−0.02 −0.005

0 −0.01

)
,

B0 =

(
0

0.01

)
, B1 =

(
0
1

)
, C0 =

(
1 0

)
,

C1 = 0.1, D = 0.2I, E0 = E1 = 0.01I, E2 = 0. (28)

In [Lee and Kwon, 2002], considering the stabilization problem only with norm-bounded un-
certainties, a maximum value ofh = 41 was obtained for the case of constant delay. In
[Fridman and Shaked, 2005], forγ = 180.07 the system with the above norm-bounded un-
certainties is stabilizable for all constanth ≤ 67.
Applying theorem 41, forK =

(
−111.9899 −81.9951

)
We can show that the system (4)

is stabilizable for all constanth ≤ 71 and the minimum boundγ = 164.141. Clearly, our
method produces much less conservative results, thus demonstrating its validity.

Example 52 Let us consider a system described by (4) and suppose that thesystem data are
as follows:

A0 =

(
0 1
−2 −3

)
, A1 =

(
0.01 0.1
0 0.1

)
,

B0 =

(
0
1

)
, B1 = C0 = C1 = 0, h = 10. (29)

Applying theorem 41, forK =
(
2.0005 2.9051

)
we obtain by using the software Matlab:

P1 =

(
6.6058 −0.1463
−0.1463 17.9371

)
,

Q =

(
1.9343 −0.1174
−0.1174 2.9663

)
,

R =

(
0.2873 0.2867
0.2867 0.7328

)
,

P2 =

(
1.9683 −0.8618
1.8801 1.8911

)
,
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P3 =

(
5.8425 −1.7195
5.3242 14.0693

)
,

P4 =

(
−0.0107 −0.0030
−0.0101 −0.0172

)
,

P5 =

(
0.0085 0.0165
0.0217 0.0428

)
,

P6 =

(
0.0076 −0.0049
0.0124 0.0075

)
. (30)

By numerical simulation, we show in figure 1 and figure 2 the trajectories and the feedback
controller of the discrete-time system with time delay (29). These figures show that the closed-
loop system is stable under the feedback controller.
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Fig. 1.The behaviors of the statesx1 andx2.

6 Conclusions

Sufficient conditions have been derived to guarantee robust stability and robust stabiliza-
tion dependent of delay for uncertain linear discrete systems with theH∞ controller. The
uncertainties considered are time-varying and norm-bounded, we have proposed an iterative
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Fig. 2.The behaviors of the control lawu.

procedure based on numerical optimization. The algorithm is simply implemented on Matlab
software. Two numerical examples and simulations are given to demonstrate the validity of
our main results.
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