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Abstract The paper is devoted to the stabilization of linear systems
having restricted states and controls. The determination of a large region
of attraction for these systems is addressed. This region is described by
an ellipsoid for which the volume is maximized. Necessary and sufficient
LMI condition is given for the derivation of state feedback controllers
driving the system asymptotically to the origin without violating the
constraints for all states in the maximal set. This condition is then ex-
tended to determine the invariant sets for systems with persistent dis-
turbances. LMI based methods are developed for constructing feedback
law that achieve disturbance rejection with guaranteed stability require-
ments. The approach is illustrated by an example for continuous time
cases.
keywords: Maximal domain of attraction; Constrained states; Con-
strained control; Disturbance; Linear Matrix Inequalities.

1 Introduction

In the last two decades, the problem of constraints had attracted a greater atten-
tion from workers in the field of control. In fact it was evident that constraints
are inherent to practically all physical and/or industrial systems. These con-
straints may come out first from physical limitations as maximum flow for a
valve, as constrained voltage and current for electrical processes and so on. Sec-
ond another kind of constraints come out from approximations to obtain the
desired model for the system as linearization approximations for naturally non
linear systems. Many approaches have been then proposed to deal with such sys-
tems i.e., constrained systems. The positive invariance concept is one of that had
emerged as appropriate to propose solutions to such problems. From the early
results of [14], many work have been done with the use of positively invariant
sets to deal with constrained systems one can see the overview of Blanchini [7]
and the reference therein. It is worth to note here that this approach is based
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on control saturation avoidance and lead to limit the working area to the lin-
ear domain of behavior of the system [15]. On the other hand, new trends have
emerged based on writing the saturation function as linear convex combination
of some constrained variables [18]. Hence, a lot of work had been developed us-
ing this approach, without being exhaustive one can see [17], [16] and references
therein. Other approaches can be found in the literature as the small and high
gain concept [20] and l1 concept [12] and so on. In the approaches above many
problems have been studied and the common goal of almost all of these works
is to find larger sets for initial conditions.

Hence, the problem of enlarging the set of attraction from the origin for
constrained control and state systems is of interest in this work. A set of the
state space including the origin in its interior is a controlled domain of attraction
to the origin if there exists a control feedback law such that for any initial state
in this set the states are driven asymptotically to the origin without constraints
violation. In fact, many work had been done in order to characterize the maximal
set of attraction for linear systems. From the work of Gilbert and Tan [13] and
several studies have dealt with the construction of such domains. In the last
years, many research work have been reported about the presence of limitation of
certain variables inputs, states and/or, outputs within given sets. Without been
exhaustive we can cite [5], [6], [8], [9], [19], [25], and the work of Blanchini [7] for
an overview in this field. Mainly, the problem of constrained system variables is of
continuing interest because of the wild sprite of possible applications. Almost all
practical systems are subject to external disturbances that can in some situations
degrade system performance if their effects are not considered during the design
phase. In the current literature there are many ways to eliminate the effects of
the external disturbances. One of them is the H∞ control technique [3], [21]-[26].
It consists of designing a suboptimal control that minimizes the effects of the
external disturbance on the output. The other approach that we will adopt here
consists of assuming that the disturbance belongs to L2[0,∞]. This approach is
referred to as H∞ theory

In connection with the positive invariance concept, this paper deals with
the problem of satisfying input and/or state constraints problems with a large
domain of attraction. We are interested in rejecting the effect of the exogenous
disturbance. Stability with respect to the constraints on the system and eliminate
the effect of disturbance on system performance is guaranteed by synthesizing
a Lyapunov quadratic function and by using the underlying positive invariance
of its associated ellipsoids. The determination of a large region of attraction is
addressed by an algorithmic procedure. This region of attraction is described by
an ellipsoid for which the volume is enlarged by using an LMI-based algorithm.
Also, Necessary and sufficient LMI conditions are given for the derivation of
state-feedback controllers driving the system asymptotically to the origin with-
out violating the constraints.

The remainder of this paper is organized as follows. In section 2, we provide
the basic definitions together with the statement of the problem. Section 3 is
devoted to preliminary results. The main results of the paper which consists
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of new statement of invariance conditions and their transformation into LMI’s
are stated in Section 4. The LMI’s given enable us to derive stabilizing state
feedback controllers driving the state asymptotically to the origin without of
violation constraints. Sufficient conditions are established to design a controller
that rejects the disturbance acting of the system. Further, the problem of the
volume maximization for the invariant set leading to the largest set of invariance
in cases of constraints in both control and state is studied. Examples are studied
in section 5 to illustrate the application of our method. Section 6 is reserved to
concluding remarks.

2 Problem formulation

Consider the following continuous time system

ẋ(t) = Ax(t) +Bu(t) + Ew(t) (1)

where the matrices A, E and B are real constant of appropriate size. The vector
disturbance w(t) belongs to the set

W = {w ∈ <l / w(t)Tw(t) ≤ 1, ∀t ≥ 0}, (2)

The sate vector x(t) is constrained to belong to the following set

L(F, v) = {x ∈ <n / Fx ≤ v, F ∈ <q×n}, (3)

and the control law u(t) ∈ <m is constrained to evolve in the following set

Ω = {u ∈ <m / |ui| ≤ 1, i = 1, . . . ,m} . (4)

The problem we are addressing below is to find a stabilizing state-feedback law
u(t) = Kx(t) and a set of initial conditions for which u(t) ∈ Ω and x(t) ∈
L(F, v) for every time t > 0 and x(t)→ 0 for t→∞.
Further, denote the Lyapunov level set as

Ω(P, γ) =
{

x ∈ Rn / xTPx ≤ γ
}

, (5)

consequently Ω(P, γ) is an invariant set of the system (1) in the sense of the
following definition:

Definition 1 A set S ⊂ <n is said to be invariant with respect to motion of the
system (1), if for all initial state x(0) ∈ S the motion of the system x(t) remains
in S for all t > 0.

Let a matrix Ki denote the ith row of K and define

L(K) = {x ∈ <n / |Kix| ≤ 1, i = 1, . . . ,m} (6)
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Lemma 2 For a given ellipsoid Ω(P, γ), if there exist an K ∈ IRm×n and a
scalar ε > 0 such that

(A+BK)T P + P (A+BK) +
1

ε
PEE

T
P + ε

P

γ
< 0, (7)

then Ω(P, γ) is a invariant set for system 1.

Proof. For V (x) = xTPx, we will show that

V̇ (x,w) = 2(xTP (A+BK)x+ Ew) < 0,

∀ ∈ ∂(P, γ), wTw ≤ 1.

Recall that for any number ε,

2aT b ≤
1

ε
aTa+ εbT b, ∀a, b ∈ IRn.

It follows that

2xTPEw ≤
1

ε
xTPEETPx+ εwTw ≤

1

ε
xTPEETPx+ ε.

Hence,

V̇ (x,w) ≤ 2(xTP (A+BK)x) +
1

ε
xTPEETPx+ ε.

It follows from (7) that for all x ∈ Ω(P, γ), wTw ≤ 1,

V̇ (x,w) < −
ε

γ
xTPx+ ε.

Observing that on the boundary of Ω(P, γ), xTPx = γ, hence V̇ (x,w) < 0
This shows that Ω(P, γ) is invariant set

If P satisfies condition (7) and Ω(P, γ) ⊂ L(K)
⋂

L(F, v) then taking any
initial condition in the ellipsoid Ω(P, γ) we have u(t) ∈ Ω and x(t) ∈ L(F, v) for
every time t > 0. In the sequel we show how to compute such K, P and γ which
determine the largest region of attraction Ω(P, γ) to the origin of the system (1)
subject to state and control constraints.

3 Preliminaries

This section provides some useful key lemmas. We derive two key lemmas that
give necessary and sufficient conditions for the inclusion of an ellipsoidal set in
respectively two kind of polyedral sets.

Lemma 3 [1] The inclusion Ω(P, γ) ⊂ L(K) is equivalent to
[

r Yi

Y T
i Q

]

≥ 0, i = 1, . . . ,m (8)

where Q = P−1, r = γ−1 and Yi = KiQ.
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Proof. Rewrite x ∈ Ω(Q−1, r−1) as Q1(x) = xTQ−1x−r−1 ≤ 0 and x ∈ L(K)
as Q2(x) = xTKT

i Kix − 1 ≤ 0 i = 1, . . . ,m. Since the condition Ω(P, γ) ⊂
L(K) is nothing than the implication Q1(x) ≤ 0 ⇒ Q2(x) ≤ 0, then by using
S-procedure Lemma , this condition is equivalent to the existence of αi > 0 such
that xTKT

i Kix− 1 ≤ αi(x
T Q−1 x− r−1) for i = 1, . . . ,m.

Now taking any arbitrary scalar β we have
βxTKT

i Kixβ − β2 ≤ αiβxT P xβ − αiβ
2r−1

and by making the change of variable x̃ = xβ, we obtain x̃TKT
i Kix̃ − β2 ≤

αix̃
T P x̃− β2αir

−1. Or equivalently for i = 1, . . . ,m,

[

x̃
β

]T [

KT
i Ki − αiQ

−1 0
0 −1 + αir

−1

] [

x̃
β

]

≤ 0,

the above inequality reduces to:

KT
i Ki ≤ αi Q

−1,

αir
−1 ≤ 1,

this leads equivalently to

KT
i Ki ≤ rQ−1.

Let Yi = Ki Q and by using the Schur lemma, we have that

[

r Yi

Y T
i Q

]

≥ 0,

is equivalent to Ω(P, γ) ⊂ L(K)

It is worth to note that lemma 3above is well known as a sufficient condition
given by [10]. Here we proove that this condition is also necessary.

Lemma 4 [2] The inclusion Ω(P, γ) ⊂ L(F, v) is equivalent to the existence of
α1 > 0, . . . , αq > 0 such that:

[

4 αi vi − Fi Q FT
i 2 αi

2 αi r

]

≥ 0, (9)

where Q = P−1 and r = γ−1 and Fi is the ith row of F .

Proof. Using Schur Lemma the LMI condition (9) is equivalent to:

−4 α2

i r−1 + 4 αi vi − Fi Q FT
i ≥ 0,

using again Schur Lemma , we obtain

[

−αir
−1 + vi −

1

2
Fi

− 1

2
FT
i αiQ

−1

]

≥ 0.
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So that for any vector [z x̃]T , we have

[

z
x̃

]T [

−αir
−1 + vi −

1

2
Fi

− 1

2
FT
i αiQ

−1

] [

z
x̃

]

≥ 0,

by developing the above inequality, we obtain

z

2
Fix̃+

z

2
x̃TFT

i − viz
2 ≤ αix̃

TPx̃− αir
−1z2,

making the change of variable x̃ = z x we have

1

2
Fix+

1

2
xTFT

i − vi ≤ αix
TQ−1x− αir

−1,

or equivalently

Fix − vi ≤ αi(x
T Q−1 x − r−1).

By using the S-procedure Lemma the proof is complete

4 Main results

In this section we give necessary and sufficient conditions for an ellipsoid to be
invariant with respect to motion of constrained control and state system. These
conditions are formulated in terms of LMI. Further, the LMI formulation enables
us to compute the maximal invariant set for these systems. The enlargement
procedure is based on the determinant maximization.

Proposition 5 There exists a stabilizing state feedback control law such that
the system (1) satisfies the state and control constraints (3)-(4) if there exist
matrices Y ∈ Rm×n, Q > 0, a scalar ε > 0 and scalars αi > 0 such that:

(i) QAT +AQ+BY + Y TBT + 1

ε
EET +Q ε

γ
> 0,

(ii)

[

4αivi − FiQFT
i 2αi

2αi r

]

≥ 0, for i = 1 . . . , q

(iii)

[

r Yj

Y T
j Q

]

≥ 0, for j = 1 . . . ,m

where Yi’s are the rows of the matrix Y .
Moreover, letting P = Q−1 and γ = r−1 we have that the ellipsoid Ω(P, γ)
is invariant for the system (1) with respect to the state and control constraints
(3)-(4) under the control law u = Y Q−1x.

Proof. Let u = Kx be a stabilizing state feedback then there exists P > 0 and
a scalar ε > 0 such that

(A+BK)TP + P (A+BK) +
1

ε
PEETP + ε

P

γ
< 0, (10)
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multiplying by P−1 the left and the right of the above inequality and using Schur
lemma we obtain condition (i) with Q = P−1, Y = KQ. In addition, the ellip-
soid Ω(P, γ) is positively invariant for the system (1) which satisfies the state
and control constraints (3)-(4). So that we have Ω(P, γ) ⊂ L(K)

⋂

L(F, v) and
then by using Lemma 3 and Lemma 4 we lead to conditions (ii) and (iii).

Note that Ω(P, γ) = Ω(γ−1P, 1) = Ω((r−1Q)−1, 1), and since condition (i),
LMI’s(ii) and (iii) are homogeneous we have that any invariant ellipsoid with
respect to the state and control constraints can be parametrized as Ω(Q−1, 1).
Consequently, with this parametrization the LMI’s (i), (ii), (iii) are expressed
equivalently by

Q AT + AQ+B Y + Y T BT +
1

ε
EET +Qε > 0, (11)

[

4αivi − FiQFT
i 2αi

2αi 1

]

≥ 0, 1 ≤ i ≤ q (12)

[

1 Yj

Y T
j Q

]

≥ 0, 1 ≤ j ≤ m, (13)

Theorem 6 The largest invariant ellipsod of the system (1) with state and con-
trol constraints (3)-(4) is the ellipsoid Ω(P ) where P is solution to the following
optimization problem (PB1):

Maximize Log(Det(P−1))

P > 0, Q > 0, ε > 0, Y, αi

subject to:
[

P I
I Q

]

> 0, (14)

QAT +AQ+BY + Y TBT +
1

ε
EET +Qε > 0 (15)

[

4αivi − FiQFT
i 2αi

2αi 1

]

≥ 0, i = 1, . . . , q (16)

[

1 Yj

Y T
j Q

]

≥ 0, j = 1, . . . ,m (17)

Proof. The volume of Ω(P ) is proportional to Det(P−1)). Maximizing this vol-
ume is equivalent to maximize log(Det(P−1))). By using the Schur Lemma, the
condition (14) is equivalent to Q > P−1. By maximizing we can prove that the
optimum is reach for Q = P−1 . The rest of the proof is straightforward.

If we fix ε, then the constraints of the optimization problem (PB1) become LMIs.
To obtain the global infinum, we may vary ε (0 < ε <∞).
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5 Example

In order to illustrate the proposed procedure we consider two examples:
Our first example is the following 2-dimensional problem adopted from [18]:

ẋ =

[

0.6 −0.8
0.8 0.6

]

x+

[

2
4

]

u(t)

+ E sign(sin(0.3t)), (18)

where the additive disturbance matrix is E = [0.1 0.1]T , with the state constraint
set as:

F =

[

6 3
7 1

]

, v =

[

21
−20

]

. (19)

We derive a state feedback u = K x which stabilizes the closed loop system
while guaranteeing that for every initial state x(0) ∈ Ω(P, γ) we have |K x| ≤ 1
and F x ≤ v along the system trajectory.
By solving the corresponding set of linear matrix inequalities LMI (14), (15),
(16), (17) and by sweeping throught ε we obtain ε∗ = 0.0246 which correspond
to maximal volume (figure 1).

0.05 0.1 0.15 0.2 0.25
20

21

22

23

24

25

26

vo
lu

m
e

ε 

figure 1 : evolution of the volume of ellipsoid

and feedback
K =

[

0.2272 −0.5757
]

, (20)

The ellipsoidal domain of attraction is

Ω(P, γ) =
{

x ∈ Rn | xTPx ≤ 1
}

. (21)

where,

P =

[

0.3655 −0.2948
−0.2948 0.4171

]

(22)
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figure 2 : Domain of attraction
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figure 3 : evolution of control action

The set Ω(P, γ) is the ellipsoid depicted in Figure 1 and is by construction
contained in the region where |K x| ≤ 1 and F x ≤ v (also reported in
Figure 1). It is clear from the figure 2 that the feedback K is stabilizing and
all constraints are respected. Figure 3 shows the control evolution for the state
beginig at xo = [−1.5 0.15]T .
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Our second example is the following 3-dimensional system [24]:

ẋ =





−0.82 17.76 90.24
0.17 −0.75 −11.10
0 0 −250



x+





−91.24
0
250



u(t)

+ E w(t), (23)

where the additive disturbance matrix is

E =





1 0 0
0 1 0
0 0 1



 , (24)

with the state constraint set as:

F =









8 20 15
−4 10 5
0 0 1
−2 −3 1









, v =









120
60
−15
60









. (25)

We derive a state feedback u = K x which stabilizes the closed loop system
while guaranteeing that for every initial state x(0) ∈ Ω(P, γ) we have |K x| ≤ 1
and F x ≤ v along the system trajectory.

By solving the corresponding set of linear matrix inequalities LMI (14), (15),
(16), (17) and by sweeping throught ε we obtain ε∗ = 0.31 which correspond to
maximal volume (figure 4).

0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.43

2.432

2.434

2.436

2.438

2.44

2.442
x 104

ε

v
o

lu
m

e

figure 4 : evolution of ellipsoid volume
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and feedback
K =

[

0.0666 0.3059 0.02
]

(26)

The ellipsoidal domain of attraction is

Ω(P, γ) =
{

x ∈ Rn | xTPx ≤ 1
}

. (27)

where,

P =





0.0132 0.0097 −0.0005
0.0097 0.1090 0.0003
−0.0005 0.0003 0.0305



 (28)

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

time

s
ta

te

x1
x2
x3

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

time

c
o

n
tr

o
l

figure 5 : Time-evolution of state and control action

Figure 5 shows the state trajectory from initial condition xo = [1 2 1]T . The
trajectory state are all driven to the origin by the provided robust state-feedback
control, with respected constraints on the state and the control.

6 conclusion

Necessary and sufficient conditions for an ellipsoid to be invariant with respect
to motion of constrained control and state system are derived. We have proposed
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an LMI based approach to the enlarging of the linear invariant ellipsoid for linear
system subject to state and control constraints. The proposed controller robustly
drives the state into the target set. Examples are worked out to demonstrate the
effectiveness of the proposed design techniques.
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