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Abstract. In sliding mode approach, the synthesis of the controller is based on 
the selection of the so called sliding surface. This paper concerned in the first, 
the design in an optimal way of this surface by using the Linear Matrix 
Inequality (LMIs) optimization technique. In the second, we propose a sliding 
mode controller based on the selected surface with application for controlling 
the position of the tip of the robot with two links. The control action consists of 
the so called equivalent control and robust control components to ensure the 
tracking error to zero with no chattering problems. The simulation results show 
the best performance when the derived controller based on the proposed sliding 
surface is applied. 
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1   Introduction 

This design of the sliding surface is the main step in the sliding mode approach [1-5], 
[9-10]. In many continuous cases, the choice of this surface is achieved by choosing 
the coefficients of the switching function so that the associated characteristic equation 
has roots in the open left-half complex plane. Recently; for the control and 
optimization problem, the LMIs has been accepted as the powerful computation tool 
[6, 7]. In the control community, it is regarded as a practical solution by transferring 
the control design problems into LMIs if analytical solutions do not exist or are too 
difficult to find. LMIs have been used previously for sliding mode control law design 
[12], [13]. In [12], LMIs is used to synthesis the gains of a sliding mode observer. 
Sliding surface is then set to be the difference between the observer and the system 
states, which can cause loss of robustness. In [13], the objective is the design of 
sliding surface so that the sliding mode dynamics is invariant to matched and 
mismatched uncertainties. However, the switching surface design is valid for a  class 
of uncertain systems under many assumptions.  
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In this paper, the selection of the sliding surface is directly based on the LMIs 
optimization technique which allows obtaining the optimal coefficients of the 
switching function. Based on the selected surface in an optimal way, this study 
propose in the second step, a robust sliding mode controller to steer the switching 
function to zero in finite time and then, to force the tracking errors to zero in finite 
time for the tip position of a two links robot [8], [14] in the presence of both matched 
and unmatched parameters uncertainty. Sliding mode using discontinuous feedback 
controllers can be used to achieve robust asymptotic output tracking [3]. However, for 
experimentation, the fast dynamics in the control loop which were neglected in the 
system model are often excited by the fast switching of the discontinuous term 
causing the so called “chattering” [11]. A class of techniques to eliminate this 
phenomenon is based on the use of an observer.  However, state observer can cause 
loss robustness. In this study, the boundary layer solution [9] is used as chattering 
suppression method and the tracking error tends approximately to zero in finite time.  

The main ideas considered in this paper can be presented in two steps. The first 
considers the problem of selecting a sliding surface for a given system. The LMIs 
technique is used for the principal reason that is switching function is selected in an 
optimal way. The second step is to find a sliding mode controller to steer the 
switching function to zero in finite time. The sliding mode approach is preferred 
because its robust character to unmodelled dynamics and its insensitivity to external 
disturbances. The synthesis of the controller is based on the selected sliding surface 
and uses the Lyapunov function.  

The notation used throughout the paper is standard; in particular r denotes the 
relative degree  of the system which is defined to be the least positive integer j  for 

which the derivative )( jX , is an explicit function of the input U , such that:  

0)()(
≠

∂
∂

U
tX r

 and 0)()(
=

∂
∂

U
tX j

 for 1,...,1,0 −= rj . 

2   System model of a two links robot 

The dynamics of a two links robot control may be expressed as follows [8]: 
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where q , q& , q&& ,τ  and i  are vectors which represent respectively the position, 

velocity, acceleration, the torque and  current vector applied to the servo motors. 
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qM  represents the positive-definite symmetric inertia matrix 

where: 
)cos(44 2212

2
122111 qllmlmIIM +++= , )cos(2 2212212 qllmIM += , 

Sliding Surface Controller Design Based On the LMIs − C. Alaoui et al.   301 

 

 

 



 
 

)cos(2 2212221 qllmIM += , and 222 IM = . 

With: Tqqq ][ 21=  : the positions, 21,ll : the lengths, 21,mm : the masses and 

21, II :the inertias respectively of the first and second segment of the pate. 
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qqC &  represents the centrifugal forces where: 

)sin(2 2221211 qqllmC &−= , )sin()(2 22121212 qqqllmC && +−= , 

)sin(2 2121221 qqllmC &= , and 022 =C . 

and the coriolis matrix, 
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qG  represents the 

gravitational forces, with g : the gravitational term.  
BJ ,  and E  are diagonal matrices representing the thermodynamic parameters and 

dependent of the temperature and the initial conditions. 
In state space, the system model is then as follows: 
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Where: 
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3 Design of the Sliding Surface by the LMIs Optimization 
technique  

Consider the system model described in the state-space representation with known 
relative degree ( 2≥r ): 





=
=
CXy

UXfX ),(&
. 

(3) 

where X  is the state vector, U  is the input of the system, y  represent the output of 

the system and C  is the matrix of appropriate dimensions.  
Let denote the desired trajectory as dy  and the tracking error by dyye −= . We 

consider )1()2( .,..,, −reee& the successively derivatives of the tracking error )(te ; the local 

coordinates [ ] [ ])1()2(
121 ...... −

− == r
rr eeeezzzzZ & ; and the state variable as 

[ ]Trr zzzzZ 12211 ... −−= . Then we obtain the system model: 

rzBAZZ += 11
& . (4) 

Where A  and B  are the matrices of appropriate dimensions. 
The objective is to design an optimal switching surface by using the LMIs 
optimisation technique such that, when the variables state is steered in this sliding 
surface the tracking errors are asymptotically forced to zero. 
We want to stabilize (4) towards the origin in finite time ( +∞<ft ). Then the 

problem leads back to find a fictive control feedback by the LMIs technique. 
Theorem 1: for the system (3), the switching surface can be presented as: 

1KZzS r −=  , where 1−= LQK  with L  and Q  the solutions of the feasibility LMIs 

0<+++ BLBLAQQA TTT . 
Proof 
By replacing 1KZzr =  in (4) we obtain: 
                                      

11 )( ZBKAZ +=& . (5) 

 
The system (5) is asymptotically stable by the Lyapunov theorem if there exist the 
symmetric positive definite matrix P  such that:  

0)()( <+++ BKAPPBKA T . 

The non linear Lyapunov inequality 0)()( <+++ BKAPPBKA T  is equivalent to 

the LMIs 0<+++ BLBLAQQA TTT  such that:  

KQLPQQ T === − ,1  and TT QKL = . 
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Let define 1KZzS r −= ; the equation 0=S  describes the desired dynamics which 

satisfy the finite time stabilization of vector Z  to zero. Then, the optimal switching 
manifold is defined as { }0),(/0 == tZSZS  on which system (3) is forced to slide on 

via the sliding mode controllerU . Replacing rz  and [ ]Trr zzzzZ 12211 ... −−=  by 
their expressions, the sliding surface is equivalent to: 

[ ]Trr eeeeKeS )2()2()1( ... −− −= &  where K  is the solution to the LMIs feasibility. 

In case 2=r  we have ezeZ r &== ,1 , 0=A  and 1=B . The feasibility LMIs in 

the theorem become: 0<+ LLT ; 02 <L . 

In this case the symmetric positive definite matrix 1−= QP  correspond to a non null 

positive constant. Finally,  KeeS −= & , with 1−= LQK is to be chosen for any fixed 

0<L  and 01 >= −QP . 

4   Application for the Control of tip position of a two links robot 

We consider in this application, the outputs tracking of a two links robot. First, we 
formulate the sliding surface by using the proposed technique presented in section III. 
And then to find a sliding mode control law which steer the switching function to zero 
in finite time. By considering the system model in (2), the relative degree of the 
system is 3=r  and by using the LMIs optimization technique presented in section 
III to choose the sliding surface, we obtain: 
                                        

TeeKeS ][ &&& −= . (6) 

 
Where Teee ][ 41= with dxxe 111 −=  and dxxe 444 −=   1x , 4x  are the 

controlled outputs and dx1 , dx4  are the angular desired outputs.  

Theorem 2: for the system model defined in (2), the sliding mode controller which 
makes the output tracking error tend approximately to zero in finite time can be 
written as follows: UrUeqU += , where : 
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 : is the equivalent control and 

)(1 SsatgmU r
−−=  : is the robust control term with m  is a positive constant. 
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Proof: 
Let consider the candidate Lyapunov functionV : 

SSSSSSVSSV TTTT &&&& =+=⇒= )(
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By replacing S& , U , eqU by their expressions we obtain r
T gUSV =&  

By assuming )(1 SsatmgU r
−−=  with m  a positive constant and the simple linear 

saturation function is defined as 
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we obtain: 

For any 0>ε , if ε>S , )(sign)(sat SS = , the function )(SsignmSV T−=&  is 

negative defined. However, in a small ε -vicinity of the origin, the so called boundary 

layer [10] ( ε≤S ), )(sign)(sat SS ≠ , 
ε
SS =)(sat  is continuous and  SSmV T

ε
−=& . 

The system trajectories are confined to a boundary layer of sliding manifold 0=S . 

5   Simulation results 

For a two links robot described by the model (2); the desired angular trajectory 

are )cos(
21 tx d
Π

=  and )sin(
24 tx d
Π

= . We consider the numerical parameters of the 

model as: 81.9=g  and  for  any segment of the pate , the length ( ml 11.01 = , 

ml 15.02 = )  , masse ( Kgm 6.01 = , Kgm 4.02 = ), inertia ( 07.01 =I , 025.02 =I  ) 
and the thermodynamics parameters 
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The computed LMIs feasibility from the MATLAB returns the optimum values: 
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In this example, the constant in the robust control term is: 02.0=m , such as V&  is 
negative as in theorem 2.  
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For different initials positions without uncertainties and with parameters uncertainties, 
the figures 1, 6, 11, 16 show the real (-) and the desired (--) trajectory for the Tip 
position of the robot. Figures 2, 7, 12, 17 and 3, 8, 13, 18 show respectively the 
angular position of the first link and second link. Figures 4, 9, 14, 19 and 5, 10, 15, 20 
show respectively the torque1 and torque2.  
The considered parameters uncertainties are the load variations considered as:  

),()06.0(6.0 01 tftrandnm +=  and ),()04.0(4.0 02 tftrandnm +=  

with  0t  is the initial time and tf  is the final time. 

 
Case 1: Y(0)=Yd(0),  X(0)=Xd(0) and without uncertainties 
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Fig. 1. Tip position of the Robot (_) with the desired trajectory (…) 
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     Fig. 2. Angular position, measured (_)        Fig. 3. Angular position, measured (_)  
                      and reference(…)(rad)                        and reference(…) (rad)  
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Fig. 4. Joint 1 torque                                   Fig.5. Joint 2 torque 

 
 
Case 2: Yd(0)- Y(0)= -0.1117 and Xd(0)- X(0)= 0.0911 and without uncertainties 
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Fig.6. Tip position of the Robot (_) with the desired trajectory (…) 
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     Fig. 7. Angular position, measured (_)        Fig. 8. Angular position, measured (_)
 
                    and reference(…)(rad)                              and reference(…)(rad)  
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Fig.9. Joint 1 torque                                   Fig.10. Joint 2 torque 

 
 

Case 3: Y(0)=Yd(0) and X(0)=Xd(0) with masses variations 
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Fig.11. . Tip position of the Robot (_) with the desired trajectory (…) 
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     Fig. 12. Angular position, measured (_)      Fig. 13. Angular position, measured (_)  
                      and reference(…)(rad)                        and reference(…) (rad)  
 

 

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

Time(s)

To
rq

ue
 1

 (N
m

)

0 2 4 6 8 10 12 14
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time(s)

To
rq

ue
 2

 (
N

m
)

 
Fig.14. Joint 1 torque                                   Fig.15. Joint 2 torque 

 
 
Case 4:  Yd(0)- Y(0)= -0.1117 and Xd(0)- X(0)= 0.0911and with masses variations 
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Fig.16. . Tip position of the Robot(_) with the desired trajectory (…) 
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     Fig. 17. Angular position, measured (_)      Fig. 18. Angular position, measured (_)  
                      and reference(…)(rad)                        and reference(…) (rad)  
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Fig.19. Joint 1 torque                                   Fig.20. Joint 2  torque 

 
 

The tracking of position of the tip of the robot was acceptably good. This fact proves 
the effectiveness of the proposed sliding mode controller based on the selected sliding 
surface by LMIs. 

6   Conclusion 

This paper has proposed a technique for controller design using the sliding surface 
concept and LMIs. As an example, we consider the control of the tip position of  a  
two links robot. The simulations show satisfactory results when the sliding mode 
controller using the proposed sliding surface is applied. 
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