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Abstract This paper deals with the extension of the positive invariance approach
to nonlinear systems modeled by Takagi-Sugeno fuzzy systems. The saturations
on the control are taken into account during the design phase. Sufficient condi-
tions of asymptotic stability are given ensuring in the same time that the control is
always admissible inside the corresponding set. A piecewise Lyapunov function
is used.
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1 Notation

– For two vectorsx, y ∈ R
n, x � y if xi � yi, i = 1, . . . , n.

– A positive definite matrixP is notedP > 0.
– we noteP < Q if matrix P − Q is negative definite.

2 Introduction

Most plant in the industry have sever nonlinearity associated to saturations on the con-
trol. With the development of fuzzy systems, it is now possible to obtain a nonlinear
representation by the qualitative knowledge of a system. On the behalf of this idea,
some fuzzy models based control system design methods have appeared in the fuzzy
control field [15],[16],[19] leading to many applications on nonlinear systems [1], [9].
The nonlinear system is represented by a Takagi-Sugeno (TS) type fuzzy model. How-
ever, to the best of our knowledge, the non quadratic saturations on the control are taken
into account in the design of the fuzzy control only for a class of fuzzy systems [6].

It is well known that all these plants admit inputs limitation which are modelled by
constraints of inequality type. The regulator problem for linear systems with constrained
control was widely studied during these two decades. The tool of positive invariance
was successfully applied to almost all the systems with constrained control, see for
example [2]- [7] and the references therein.
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In this paper, the saturations on the control are taken into account with the fuzzy
model. The concept of positive invariance is used to obtain sufficient conditions of
local asymptotic stability for the global fuzzy system with constrained control inside a
subset of the state space. The main idea of [8] representing the nonlinear system by a set
of like uncertain linear subsystems is used in this paper. The problem is then to design
a controller which is ”robust” with respect to the upper bound extreme subsystems by
taking into account the saturations on the control. A piecewise Lyapunov function used
in [8] and [14] is used to analyze and design the controllers which ensure asymptotic
stability of the nonlinear system despite the presence of saturations on the control.

In a previous work [11], the same methodology was used with a common Lya-
punov function and a piecewise Lyapunov function. The controller gains were designed
such that all the level sets associated to the corresponding subsystems contain a same
predefined polyhedra to ensure the asymptotic stability inside a common region. Nev-
ertheless, in this work, we show that even a piecewise Lyapunov function is used, no
common region is needed at all to guarantee the asymptotic stability of the fuzzy sys-
tem despite the presence of constraints on the control. Hence, a set of Linear Matrix
Inequalities (LMIs) is proposed to built stabilizing controllers.

This paper is organized as follows: Section3 deals with the problem presentation
while Section4 presents some preliminary results concerning the technique of rewriting
equivalently the fuzzy system under the form ofr like uncertainty subsystems. The main
results of the paper are given by Section5. An example is studied in Section6.

3 Problem presentation

Let us consider the following nonlinear system with constrained control that can be de-
scribed by the T-S fuzzy model:
IF x1(t) is Mi1 and. . . andxn(t) is Min THEN,

ẋ(t) = Aix(t) + Biu(t), i = 1, . . . , r (1)

whereMij is the fuzzy set,r is the number of IF-THEN rules,x ∈ R
n is the state and

u ∈ R
m is the control which is constrained as follows:

u ∈ Ω = {u ∈ R
m,−q2 � u � q1; q1, q2 ∈ R

m} . (2)

Following [16]-[19], the global model is structured in the following form,

ẋ(t) = A(α)x(t) + B(α)u(t) (3)

with,

α =
[

α1 . . . αr

]⊤

A(α) =

r
∑

i=1

αi(x(t))Ai; (4)

B(α) =

r
∑

i=1

αi(x(t))Bi; (5)
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with, αi(x(t)) is the normalized membership function of the inferred fuzzy setMi =
∏n

l=1
Mil and,

αi(x(t)) ≥ 0, i = 1, . . . , r;

r
∑

i=1

αi(x(t)) = 1 (6)

LetM be the set of membership functions satisfying (6).
Ai andBi are constant Matrices of appropriate size and each pair(Ai, Bi) is as-

sumed to be stabilizable.
In general, the control is given by,

u(t) = F (α)x(t) (7)

This control leads to the following closed-loop system,

ẋ(t) = [A(α) + B(α)F (α)] x(t) (8)

The main objective of this paper is to design the controllerF (α) such that the global
system is asymptotically stable at the origin despite the presence of constraints on the
control. To achieve this objective, two techniques will be used: The first consists in
rewriting equivalently the initial system (1) by using a state space repartition allowing
to introducer like uncertain subsystems as used before by many authors. The second
concerns the use of the so-called positive invariance approach which will enable one to
construct regions where the control never saturates.

4 Preliminary results

In this section, we recall the technique of rewriting equivalently the fuzzy system (3)
under the form ofr like uncertainty subsystems as proposed in [8].

Let us consider the nonlinear system with constrained control that can be described
by the T-S fuzzy model (1). Following the idea of [8], one can divide the input space
into fuzzy subspaces and build a linear model, called the local model, in each subspace.
Then, the membership function is used to connect smoothly the local models together
to form a global fuzzy model of the nonlinear system. Define in the state space the set
of subspaces{Sj j = 1, · · · , r} as follows :

Sj = {x ∈ R
n/αj(x) ≥ αi(x), i = 1, · · · , r, i 6= j}, (9)

The characteristic function of the setSj is defined by :

ηj =







1, x ∈ Sj

0, x /∈ Sj
;

r
∑

j=1

ηj = 1 (10)

On every subspaceSj the fuzzy system can be denoted by:

ẋ(t) = (Aj + ∆Aj(t))x(t) + (Bj + ∆Bj(t))u(t) (11)
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with,

∆Aj(t) =

r
∑

i=1,i6=j

αi(t)(Ai − Aj);

∆Bj(t) =

r
∑

i=1,i6=j

αi(t)(Bi − Bj)

The idea of this approach is to choose on every subspaceSj , j ∈ 1, . . . , r, the fuzzy
subsystem (11) and consider that the interaction of the corresponding system with all
the remainderr − 1 subsystems is taken into account by the like uncertainty terms
∆Aj(t) and∆Bj(t). It also is assumed that if thejth subsystem is in thejth subspace,
it will stay in this subspace for a timetj > τ, τ > 0 is a fixed constant. The number of
traversing time instants among the regions is also assumed to be finite.

Remark 1.It is useful to note that∆Aj(t) and∆Bj(t) are known at any time and the
studied system is not an uncertain system. However, in order to obtain simpler stability
conditions, this technique assumes that the terms∆Aj(t) and∆Bj(t) are like uncertain
terms and are bounded.

Following the idea of [8], we assume that an upper bound of each like uncertainty
term is known and is given by,

[∆Aj(t)]
T [∆Aj(t)] ≤ ET

1jE1j , ∀t � 0; j = 1, . . . , r (12)

[∆Bj(t)]
T [∆Bj(t)] ≤ ET

2jE2j , ∀t � 0; j = 1, . . . , r (13)

Note that the details about the estimation of the upper bounds according to (12)-(13)
are widely developed in [8]. Using these upper bounds one can define the following
extreme subsystems:

ẋ(t) = (Aj + Ej1)x(t) + (Bj + Ej2)Fjx(t),

x(t) ∈ Sj , j = 1, . . . , r

Hence, we obtainr distinct linear time-varying subsystems. The stabilization problem
of the unconstrained fuzzy system (1) has been studied in [8] by using these extreme
subsystems.

5 Main results

In this section, we propose sufficient conditions of local asymptotic stability for the
system with constrained control, by using a piecewise Lyapunov function. This result
is based on the technique of rewriting equivalently the fuzzy system (3) under the form
of r like uncertainty subsystems as proposed in [8]. We consider that the control is
constrained as follows:

u ∈ Ω = {u ∈ R
m,−q2 � u � q1; q1, q2 ∈ R

m} . (14)
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The objective is then to design for such a subsystem a feedback control given by:

u(t) = Fjx(t), x(t) ∈ Sj (15)

which guarantees the asymptotic stability of the like uncertain subsystem (11) despite
the presence of the saturations (14). The subsystem in closed-loop is given by:

ẋ(t) = [(Aj + BjFj) + (∆Aj(t) + ∆Bj(t)Fj)] x(t) (16)

Note that the control in system (3) can be considered in this approach as a switching
control formed by all the subsystems controls and given by,

u(t) =
r

∑

j=1

ηjFjx(t) (17)

In the constrained case, recall that model (16) remains valid every time only if the state
is constrained to evolve in a specified region defined by

Dj = {x ∈ R
n/ − q2 � Fjx � q1; q1, q2 ∈ R

m}; (18)

Note that these domains are convex and unbounded form < n.
In this work, we follow the approach proposed in [12], [4], [5]. This approach uses

the following piecewise smooth quadratic Lyapunov function candidate:

V (x) = xT Px(t) (19)

whereP =
∑r

j=1
ηjPj . Let us define the level set of this function by :

Ψ(P, ρ) = {x ∈ R
n|V (x) � ρ; ρ ≻ 0}

In a previous work [11], the same methodology was used with a common Lyapunov
function for all ther upper bound extreme subsystems and a piecewise Lyapunov func-
tion. The controller gainsFj were designed such that all the level sets associated to
matricesPj , j = 1, . . . , r contain a same predefined polyhedraΓ to ensure the asymp-
totic stability inside a common region. Nevertheless, in this work, we show that even a
piecewise Lyapunov function is used, no common region is needed at all to guarantee
the asymptotic stability of the fuzzy system despite the presence of constraints on the
control.The aim of this approach consists in giving conditions allowing the choice of a
stabilizing controller (15) in such a way that :

– V (x) is Lyaponuv function of the fuzzy system.
– There exist a positif scalarρ such thatΨ(P, ρ) ⊆

⋂

Dj .

Hence, for allx ∈ Ψ(P, ρ) the system trajectory converge to the origin and the control
never saturates.

for this, we recall bellow the result of stabilizability of the unconstrained fuzzy
system, using the idea of [8] based on the upper extreme subsystems. The conditions
of asymptotic stability for the fuzzy system (3) are given according to the following
definition.
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Definition 1. The system (3) is said to be quadratically stabilizable if there exists a con-
trol law (7), a positive symmetric matrixP and a scalarγ > 0 such that the following
condition is satisfied:

V̇ (x(t)) = x(t)T
{

[A(α) + B(α)F (α)]T P+

P [A(α) + B(α)F (α)]} x(t) ≤ −γ‖x‖2 (20)

∀x(t) ∈ R
n, ∀α ∈ M, ∀t > 0 whereV (x) = xT Px is a Lyapunov function.

It is worth noting that if the system (3) is quadratically stabilizable, then function
V (x) is a Lyapunov function for the closed-loop system (8). Then, the equilibrium point
x = 0 will be uniformilly asymptotically stable in the large.

Lemma 1. [8]: The fuzzy system (3) is quadratically stabilizable if and only if there
exists a set of feedback gains(F1, F2, . . . , Fr) such that the following closed loop sub-
systems with the accurate upper bounds are quadratically stable:

ẋ(t) = (Aj + Ej1)x(t) + (Bj + Ej2)Fjx(t), (21)

x(t) ∈ Sj , j = 1, . . . , r

Recall that the stability result obtained by [8] is based on the use of Lemma6 and a
piecewise Lyapunov function candidate (19), as used by [14].

The use of the lemma 1 and the result of [12] enable us to state the main result of this
paper concerning the asymptotic stability of the fuzzy system (3) with the saturations
(2).

Theorem 1. : If there exist a set of symmetric positives definite matrixPi ∈ R
n×n and

a positive scalarρ such that:

(Aj + BjFj)
T Pj + Pj(Aj + BjFj) + (Ej1 + Ej2Fj)

T Pj

+Pj(Ej1 + Ej2Fj) < 0; j = 1, . . . , r; (22)

Ψ(P, ρ) ⊂ Dj , j = 1, . . . , r (23)

Then, the fuzzy system (3) with the feedback control (17) is asymptotically stable∀x0 ∈
Ψ(P, ρ).

Proof. Conditions(22) imply that the functionV (x) = xT Px is a Lyapunov functions
of all the upper bound extreme subsystems (21). Recall that the level setΨ(P, ρ) of the
Lyapunov function is positively invariant w.r.t the upper bound extreme subsystems.
According to Lemma6 and Definition5, this set is also a level set (region of stabil-
ity) for the like uncertain subsystems (16), that is, the setΨ(P, ρ) is also positively
invariant w.r.t the like uncertain subsystems (16). Thus, the control is always admissi-
ble i.e.,−q2 � Fjx(t) � q1, ∀t � 0 by virtue of conditions (23). Consequently, each
controlu(t) = Fjx(t) is admissible∀x0 ∈ Ψ(P, ρ) and the linear subsystem (16) is
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always valid inside this region of linear behavior. Hence, it is obvious that by applying
the switching control (17) to the like uncertain fuzzy system (11), the control remains
admissible by virtue of the following,

−q2 � Fjx(t) � q1, ∀t � 0 implies

−q2 �
r

∑

j=1

ηjFjx(t) � q1, ∀t � 0; j = 1, . . . , r

whereη is defined by (10). In order to guarantee that this implication remains satis-
fied even if the state switches from a subspaceSj to a different subspaceSi, i 6= j,
it is necessary to take the initial state inside the common domainΨ(P, ρ). The posi-
tive invariance property of the setΨ(P, ρ), implies that all the uncertain subsystems
(16) remain linear despite the presence of the saturations. This fact, allows the appli-
cation of the Lemma6 and Definition5 to these like uncertain subsystems to obtain
r upper bound extreme subsystems by using the assumptions (12). If in addition the
feedback controllersFj satisfy conditions (22), then the global fuzzy system (3) with
the feedback control (17) is asymptotically stable at the origin∀x0 ∈ Ψ(P, ρ) despite
the presence of saturations. ∇

It is worth noting that to include a symmetric ellipsoid inside a non symmetrical
polyhedra, it is sufficient to realize this only inside the symmetrical part of the polyhe-
dra. This means in our case, to realize (23) only withq = min(q1, q2). It is well known
that to obtain condition (23), one has only to satisfy the following inequalities [13],

ρf i
jP

−1(f i
j)

T � q2

i , j = 1, . . . , r; i = 1, . . . , m, (24)

wheref i
j is the ith row of matrix Fj , q = min(q1, q2). These inequalities can be

transformed by the use of Schur complement to the following LMI,
[

µi yi
j

∗ X

]

≥ 0, i = 1, . . . , m (25)

whereyi
j is theith row of matrixYj = FjX , X = P−1 andµi = q2

i /ρ.
The result of Theorem7 is now used for the control synthesis.

Theorem 2. : For given positive scalarsρ, if there exist symmetric definite positive
matricesX1, . . . , Xr and matricesY1, . . . , Yr, solutions of the following LMIs:

Xj(Aj + E1j)
T + Y T

j (Bj + E2j)
T +

(Aj + E1j)Xj + (Bj + E2j)Yj < 0, (26)
[

µi yi
j

∗ Xk

]

≥ 0, (27)

Xk > 0,

j = 1, . . . , r; i = 1, . . . , r; k = 1, . . . , r

whereµi = q2

i /ρ, yi
j is the ith row of matrixYj ;

Then, the fuzzy system (3) with the feedback control (17) with,

Fj = YjX
−1 (28)

Pi = X−1

i (29)
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is asymptotically stable at the origin∀x0 ∈ Ψ(P, ρ).

Proof. Follows readily from Theorem6. ∇

This result is easily applied to design controllers: solving the LMI’s (26)-(27) by
any common available software (in our case we used the matlab LMI control toolbox),
matricesPi and the controllers gainsFi can be computed easily according to the equal-
ities (28) and (29).

6 Example

Let us Consider the following constrained nonlinear system,

ẋ1(t) = −2.1x1 + 1.5x2(t) + 2.5u1(t) + 0.5u2(t)

ẋ2(t) = 3.5x1(t) − 0.5[0.5 + ln(x2

1
+ 1)]x2(t) + u1(t) − 1.5u2(t)

where the control is constrained as follows:

−q2 � u � q1; q1 =

[

35
45

]

; q2 =

[

40
45

]

Now we give the exact approximation of the nonlinear system by a TS model. For this,
assume thatx1(t) ∈ [−γ, γ], then one can write,

ln(x2

1
+ 1) = M1

1
(x1(t)).0 + M2

1
(x1(t)).ln(γ2 + 1) (30)

with,

M1

1
(x1(t)) =

ln(γ2 + 1) − ln(x2

1
+ 1)

ln(γ2 + 1)
= α1(t)

M2

1
(x1(t)) = 1 − M1

1
(x1(t)) =

ln(x2

1
+ 1)

ln(γ2 + 1)
= α2(t)

The fuzzy model which represents exactly the nonlinear system is given by,

If x1(t) is M1

1
Then ẋ(t) = A1x(t) + B1u(t);−q2 � u � q1

If x1(t) is M2

1
Then ẋ(t) = A2x(t) + B2u(t);−q2 � u � q1

where matricesA1, A2, B1 andB2 are given by,

A1 =

[

−2.1 1.5
3.5 −0.25

]

; B1 =

[

2.5 0.5
1 −1.5

]

A2 =

[

−2.1 1.5
3.5 −0.5(0.5 + ln(γ2 + 1))

]

; B2 = B1.
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For this fuzzy system composed of two subsystems . The following upper bounds can
be taken :

E11 = 0.25|A2 − A1|; E21 = 0; E12 = 0.25|A1 − A2|; E22 = 0.

Solving the LMI (26)-(27) forγ = 15 we find:

P1 =

[

0.1044 0.0050
0.0050 0.0356

]

; P2 =

[

0.0796 −0.0395
−0.0395 0.0511

]

The obtained gain controllers are given by,

F1 =

[

−0.3501 −0.7210
1.0798 0.1654

]

; F2 =

[

0.1946 −0.4226
0.7014 −0.4580

]

The set of positive invarianceΨ(P, ρ) is depicted in the Figure 1 together with the
setsDj .
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Figure1. The setΦ(ρ) representation.

7 Conclusion

In this paper, the problem of constrained nonlinear systems represented by fuzzy sys-
tems is studied. The positive invariance tool is used. Sufficient conditions of asymp-
totic stability are obtained despite the presence of saturations on the control by using a
piecewise Lyapunov function. The used approach is the one followed in [8] with like un-
certain subsystems and upper bound subsystems. The obtained results are successfully
applied to a nonlinear systems with constrained control, represented by Takagi-Sugeno
(TS) type fuzzy model.
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Figure2. This figure presents the evolution of the state of the system in closed-loop inside the
common set of positive invarianceΦ(ρ) for different initial states.
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Figure3. The control evolution for an initial state inside the common set of positive invariance
Φ(ρ).
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