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Abstract.  This paper relates an adaptive speed control of hybrid fuzzy-neural network for a 
high-performance induction motor drives. Speed control performance of induction motors is 
affected by parameter variations and non linearities in the induction motor. The aim of the 
proposed control scheme is to improve the performance and robustness of the induction motor 
drives under non linear loads and parameter variations. Both the design of the fuzzy controller 
and its integration with neural network in a global control system are discussed.. Simulation 
results shown excellent tracking performance of the proposed control system, and have 
convincingly demonstrated the usefulness of the hybrid fuzzy-neural controller in high-
performance drives with uncertainly   
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1. Introduction 

 
The modern technological processes are characterised by the application of more and 
more complicated equipment also modern electrical drives.  High performance control 
and estimation techniques for induction motor drives are very fascinating and 
challenging subjects of research and development, and recently, they received wide 
attention in the literature [9, 10, 11, 17, 19, 20]. However, for high dynamic 
performance industrial applications, their control remains a challenging problem 
because they exhibit significant non linearities and it is now well known that 
uncertainties of plant parameters and influence of unknown external disturbances can 
degrade significantly the performance of the system with linearizing feedback. Filed 
oriented control methods are attractive, but suffer from one major disadvantage [10, 
11, 19].  It’s sensitive to uncertainties parameter of the induction motor caused by the 
thermal variations and load torque disturbances. Consequently, performance 
deteriorates and adaptive control scheme can be appropriate technique for controlling 
the induction motor by where the parameters are constant or change very slowly. The 
need to control complex dynamic systems when the available knowledge on the 
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system and its environment it insufficient or vague let first to the development of 
artificial intelligence (AI) techniques. In recent years, Artificial Neural Network 
(ANN) and Fuzzy Logic Controllers (FLC), have gained great important and 
witnessed a rapid growth in industrial applications and proved their dexterity of many 
respects [1,  2, 3, 9, 12, 13]. They proved that such control can achieve satisfactory 
results in dealing with systems whose behaviour is difficult to describe 
mathematically or is highly nonlinear. In the present paper an effort has been made to 
present a review of the recent developments in the area of high-performance control 
of AC motor drives. In our case an induction motor has been to explore the design of 
an adaptive fuzzy-neural network tracking control of induction motor and to 
investigate by simulation and experiment its performance. The motor drive is 
preliminary simulated and experimented with conventional digital PI speed regulator 
in order to establish a term of comparison.  The paper is structured as follows. Section 
2 describes a mathematical of induction motor drive, Section 3 gives the structure of 
the proposed control scheme. The recurrent NN identifier and fuzzy PI-type control 
design are discussed in sections 4, 5 and 6. Section 7 and 8 provide the simulation 
results and conclusions, respectively.  

2. Dynamic model of induction motor 

The dynamics of the induction motor in the d-q motor reference frame, which is 
rotating at the synchronously speed, can be simply described by  the following 
nonlinear differential [11] 

 
where                                 
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is, vs, sy , R, L denote  the stator current and voltage vector components, the rotor 
flux linkage, resistance and inductance respectively. The subscripts s and r stand for 
stator and rotor, d and q are the components of a vector with respect to a 

(1) 
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synchronously rotating frame. ωe, ωr  are the angular speed of coordinate system and 
the angular speed of rotor shaft respectively. σ is the dispersion coefficient, p denotes 
the number of pole pairs,  J is the total rotor inertia and Tl is the load torque. 

3.  Adaptative fuzzy-neural network speed controller design 

Fig.1 shows a block diagram representation of the  adaptation  learning control   
scheme proposed  in this study. The reference input signal is ωref. A speed control 
design with the artificial neural network controller ANNC was used to produce an 
adaptive control force so that the induction motor speed can accurately track the 
reference command ωref. The recurrent neural network identifier RRNI was used to 
provide real-time adaptive identification of the unknown motor dynamics. The fuzzy 
logic controller FLC , is  used to reduce the overshoot and extent oscillation, and 
make reasonably good tracking for steady-step  or slowly varying operating 
conditions. The current model of the induction motor is identified by the RNNI  block, 
we can directly calculate a control signal uN(k) by the iterative algorithm  ANNC, 
which is combined  with the output signal uf(k)  of the FLC, the produce the actual 
input  system u(k).  

 
 

4.  Neural controller architecture 

The prototype processing element of any ANN based neural controller [1,2,3], is the 
model of the neuron shown in Figure 2.  Here for generality, each neuron performs 
two functions. The first is to sum all inputs from the upper layer based on their 
weighting factors  in equation (1.a). The second is to process this sum by a non linear 
function ϕ(x)in equation (1.b), which is usually sigmoidal ( e.g. than function) to 
facilitate the gradient search techniques used in the training procedure. 

Fig.1. Adaptive fuzzy-neural speed controller block 



519    IJ-STA, Special Issue, CEM, December 2008.    

 
Fig.2. Basic model of neuron 

 
The basic equations describing the dynamics of each neuron are 

                                                j
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where   jiw  design the synaptic weight between the jth neuron and the  ith neuron  

in two adjacent layers. (.)ϕ  is the activation function 
An  Artificial Neural Networks (ANNs) is made up of many such neurons arranged in 
a variety of topologies. The feedforward topology shown in the network of Figure 3 
offers the advantage of simplicity and ease of programming. 
 

 
 Fig. 3. Topology of a feedforward Neural Networks Controller 
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Such a neural network contains three layers, input layer, hidden layers and output 
layer. Each layer is composed of several neurons. Each neuron in the hidden layer of 
the network consists of a non linear mapping that usually chosen to be a sigmoidal 
function of the form ϕ (x)= ( 1-exp(-x))/(1+exp(-x)). The number of the neurons in 
the input and output layers depends on the number of  the  selected input and output 
variables. The number of hidden layers and the number of neurons in each depend on 
the system dynamic and the desired degree of accuracy. All then neurons are 
interconnected in adjacent layers. The strength of the interconnections is determined 
by the weighting vectors {W} and {V}of the neural network. {W} and {V} are 
determined by an iterative training procedure such as back-propagation which is a 
reliable through often slow technique. 

5. Neural  Network  Training  Algorithm 

The error back-propagation training  algorithm is adopted  to perform identification 
and control, applied to dynamic system. It was first introduced by Narendra and 
Parthasarathy [4,5]. The algorithm is based on the gradient descent search technique 
that minimizes a cost function of the mean square errors. The minimization process is 
done by adjusting the weighting vector of the neural network. Several training 
algorithms have been proposed to adjust the weight values in dynamic recurrent 
neural network. Examples for these methods are the dynamic back-propagation from 
Narendra and Parthasarathy; 1991; Williams and Ziepser, 1995; among others. The 
cost function being minimized is the error between the network output and the desired 
output given by equation (3).                                          
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where  )k(y j  is the output of neuron j and )k(y*
j  is the desired pattern  for that 

neuron. Let )k(jiη denote the learning rate parameter assigned to synaptic weight 

 w )k(ji  at iteration number k. Miniminzing equation (3) leads to a sequence of 
update of the weight vector. The weights of the interconnections between  two 
adjacent  layers can be update based on the following formula ( McClelland et al., 
1986 ). 
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α is the momentum gain , is susceptible to local minima and needs additional 
computation for gradient evaluation and ( ) jiw kD  is weight change based on 
gradient of the cost function  Ek,w and k is the iteration number. 



521    IJ-STA, Special Issue, CEM, December 2008.    

6. Fuzzy-logic controller 

It appears that fuzzy logic based intelligent control is most appropriate for 
performance improvement of the ac machines. The main preference of the fuzzy logic 
is that is easy to implement control that it has the ability of generalisation [12, 13]. 
The basic configuration of the fuzzy logic system is featured in Figure 4.  

 
 
 
 
In the system presented in this study, Mamdani type of fuzzy logic is used for sped 
controller. The command signals to the speed controller are the error ‘e(k)’ and 
change rate of error  ‘Δe(k)’. Fuzzy logic controller is based on three well known 
blocs: Fuzzyfication bloc, block of rule bases and defuzzyfication block, whose 
function is following briefly explained. The fuzzification stage transforms crisp 
values from a process into fuzzy sets. The second stage is the fuzzy rule bases which 
expresses relations between the input fuzzy sets of linguistic description rules  A, B 
and the output fuzzy set C in the form of  ″ IF A and B – THEN ″ , and the 
defuzzyfication stage transforms the fuzzy sets in the output space into crisp control 
signals. As fuzzy system, we are considering a fuzzy PD controller. The control 
algorithm is represented by fuzzy rules [3],[7]. The first step in designing the fuzzy 
controller is to generate the fuzzy rules based on the knowledge of the expert. 
According to the expert, three situations can be distinguished for the motor speed, 
namely, above, around and below the desired reference speed. The linguistic 
representation of the motor speed with respect to a given desired reference speed can 
be easily translated into a linguistic characterisation of the system error. By defining 
the system error between the measured speed and the desired speed, the propositions, 
higher, around and beneath the desired reference speeds are otherwise expressed as 
Positive, Zero and Negative errors. Furthermore, for given system state variables, the 
expert can express how he would act if he was controlling the system. For example, a 
typical rule reads as follows: 
 
IF speed error is Positive Small (PS),  
                    AND rate of change in speed error is negative small (NS) 
                                THEN change in motor voltage 
(Output of fuzzy controller is Zero (Z)) 
 

Fig.4..Block diagram of Fuzzy Control system 
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The second step consists of modifying the rule-base in order to satisfy the 
requirements induced by the proposed strategy. The fuzzy controller has to produce a 
null action when the system has a normal behaviour. In this work, a simple 
Proportional-Integral type (PI) speed control scheme was implemented and used to 
assess the basic performance of the system.  The output of the fuzzy controller uf(k) is 
given by: 

                                          ( )(k)(k)f  e   e  (k)u Δ−= fF                                      (5)                   

ωhere Ff  is a non linear function determined by fuzzy parameters, e(k), Δe(k) are the 
error and change-of-error respectively. A type of those controllers is fuzzy PI 
controller whose input is the error e(k). 

                                                  e(k) = ωref(k) - ωr(k)                                               (6) 

 
where ωr*(k) is the reference model and ω(k)  is the process output at time k. The 
fuzzy logic controller was used to produce and adaptive control so that the motor 
speed ωr(k) can accurately track the reference command ωr*(k).  For the proposed 
fuzzy controller, the universe of discourse is first partitioned into the five linguistic 
variables. The controller treats each measurement as a fuzzy singleton and fuzzifies it 
using the fuzzy sets shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Degree of member ship of error and its change  
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Triangular shapes were chosen as the membership functions due to the linear equation 
in evaluation of membership functions and the output of the fuzzy controller is 
illustrated in Figure 6. 
 
Where NB: Negative Big, PB: Positive Big, NS: Negative Small, PS: Positive Small 
and ZE: Zero Equal. 
 
The fuzzy rules based on speed error e(k) and its variation change Δe(k) are presented 
in Table 1. This implies an inference engine based on 5 implications rules for each of 
the speed error and its variation, thus a total 25 combinations take place. One can see 
on Table 1. the rules sets of the fuzzy controller. Every combination is associated to a 
condition instruction as follows: 
 
If  e(k) is NB  And Δe(k) is PB , Then Δu(k) is  ZE 

  
e \ Δe NB NS ZE PS PB

NB NB NB NS PB PS 
NS ZE NS ZE PS ZE
ZE PB PB ZE PS NB
PS ZE PS PB NS NB
PB PB PS NS NS NB

Tab.1 Control rules for proposing system 

7. Performance study 

The adaptive fuzzy-neural network based speed control, presented in section III is 
checked by experimental investigation in order to validate the all the control strategies 
and then evaluate the performance of the system. For the simulation results used in 

Fig.6. Output membership functions 
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this paper, the parameters values of the system under study are summarized in Table 
II. The performance of the proposed controllers is evaluated under a variety of 
operating conditions. The controller algorithm is housed inside the personal computer 
with Pentium IV microprocessor and all numerical values of the simulation model are 
obtained either by measurements or identification from laboratory experiments. The 
software environment used of these simulation experiments is MATLAB with 
Simulink Toolboxes. 
 
  

Rated values Power 1.5 kW 
 Frequency 50 Hz 
 Voltage Δ/Y 220/380 V 

 Current Δ/Υ 11.25/6.5 A 
 Motor Speed 1420 rpm 
 pole pair (p) 2  

Rated parameters Rs 4.85 Ω 
 Rr 3.805 Ω 
 Ls 0,274 H 
 Lr 0,274 H 
 M 0,258 H 

Constant J 0,031 kg,m²
 

Tab.2 Rating of tested induction motor 
 

Several test cases were completed in order to evaluate the performances under a 
variety of operating conditions. However, for briefness, only important results are 
reported in this paper. In each of the simulation, the neural networks have been 
chosen with one hidden layer with five neurons. The initial values of the weights were 
chosen randomly in the interval (0, 1). The parameters of the neural networks are 
adjusted using the back-propagation learning algorithm [1, 2] and the following 
parameters were chosen constants as α=05, η = 0.1. As seen in figures 7-8-9, the 
results were very successful. the speed trajectory with the desired speed changing 
from the level to another. These figures show the speed trajectory when the desired 
speed changes from one value to another, using the proposed hybrid fuzzy-neural 
controller. The measured speed is superimposed on the specified desired speed in 
order to compare tracking accuracy.  
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Fig.7 Speed control using adaptive fuzzy-neural networks 

Fig.8-a Speed control using adaptive fuzzy-neural networks 
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To illustrate the effectiveness of the high-performance tracking control for induction 
motor, the proposed hybrid fuzzy-neural controller was applied to control the motor 
under variable load torque. External disturbance is introduced to the system by 
disturbing the load during trajectory control. Figure 8, shows the motor speed 
regulation at 147 rad/s, by the hybrid fuzzy-neural controller due to external 
disturbances. He disturbances can be seen at t=1.5 s and t=2.5 s. 
 
To demonstrate the robustness of the proposed controller, we assume that the 
parameters of rotor resistance Rr and load inertia J have been perturbed from their 
nominal nominal values. It is evident that the speed response of the proposed hybrid 
control scheme is not affected by this variation. Again, the results of this test were 
also excellent.   In other test, a different type of trajectory was considered. The motor 
is under the same dynamic load. Figure 10, displays the speed tracking performance 
of the hybrid fuzzy-neural networks controller. High tracking accuracy is observed at 
all speeds. One can see from the figure this figure that the results were very 
successful. 
 
 
 
 
 
 

Fig.8-b Speed control using adaptive fuzzy-neural networks 
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Fig.9. Speed control using adaptive fuzzy-neural networks under stochastic 
load torque changes 
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As shown in Fig. 11,12, at t=0.5 s, the reference speed is changed from 100 rad/s to 
150 rad/s. At  t=1s, the reference speed is changed from 150 rad/s to 40 rad/s ( 
reversal operation). The results show clearly that the output of the speed controller, 
which is made robust against the rotor resistance variations, follows the imposed 
reference.  

 
 

   
Fig.11. Speed control using adaptive fuzzy-neural networks 

under stochastic load torque changes 

Fig. 10 Results of speed control of a square reference track using  hybrid 
fuzzy-neural networks  controller
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8. Concluding remarks 

In this paper, it has been proved that an induction motor has been successfully 
controlled by the proposed adaptive fuzzy-neural network based control technique. 
The three-layered RNNI using a back propagation algorithm was used to provide real-
time adaptive estimation of the induction motor unknown parameters and three-
layered RNNC was used to produce an adaptive control which h is combined with the 
output signal FLC compensator.  
The result signal control u force so that the motor speeds control could accurately 
track the reference command ωref. The performance and robustness of the proposed 
controller scheme have evaluated under a variety of operating conditions of the 
induction motor drive. The results demonstrated the effectiveness of the proposed 
structure. System performance, both in steady state error in speeds and dynamic 
conditions, was found to be excellent and there is not any overshoot. 
 
 

Fig. 12. Results of speed control of a squarer reference track 
using hybrid fuzzy-neural networks controller
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